{"title":"用于健忘知识追踪的信息表征","authors":"Zhiyu Chen, Zhilong Shan, Yanhua Zeng","doi":"10.1007/s11257-024-09391-4","DOIUrl":null,"url":null,"abstract":"<p>Tracing a student’s knowledge state is critical for teaching and learning. Knowledge tracing aims to accurately predict student performance by analyzing historical records on online education platforms. Most studies have focused on a student’s skill with interactions sequence to predict the probability of correctly answering the latest question. However, they still suffer from the challenge of information sparsity and student forgetting. Specifically, the relationship between question and skill, and the features related to question texts have not been integrated to enrich information exploration. Besides, modeling forgetting behavior remains a challenge in assessing a student’s learning gains. In this paper, we present a novel model, namely Informative Representations for Forgetting-Robust Knowledge Tracing (IFKT). IFKT utilizes a light graph convolutional network to capture various relational structures via embedding propagation. Then, the embeddings are assembled with rich interaction features separately as the powerful representation. Furthermore, attention weights assignments are individualized using the relative positions, in addition to the relevance between the current question with historical interaction representations. Finally, we compare IFKT against seven knowledge tracing baselines on three real-world benchmark datasets, demonstrating the superiority of the proposed model.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"102 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Informative representations for forgetting-robust knowledge tracing\",\"authors\":\"Zhiyu Chen, Zhilong Shan, Yanhua Zeng\",\"doi\":\"10.1007/s11257-024-09391-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tracing a student’s knowledge state is critical for teaching and learning. Knowledge tracing aims to accurately predict student performance by analyzing historical records on online education platforms. Most studies have focused on a student’s skill with interactions sequence to predict the probability of correctly answering the latest question. However, they still suffer from the challenge of information sparsity and student forgetting. Specifically, the relationship between question and skill, and the features related to question texts have not been integrated to enrich information exploration. Besides, modeling forgetting behavior remains a challenge in assessing a student’s learning gains. In this paper, we present a novel model, namely Informative Representations for Forgetting-Robust Knowledge Tracing (IFKT). IFKT utilizes a light graph convolutional network to capture various relational structures via embedding propagation. Then, the embeddings are assembled with rich interaction features separately as the powerful representation. Furthermore, attention weights assignments are individualized using the relative positions, in addition to the relevance between the current question with historical interaction representations. Finally, we compare IFKT against seven knowledge tracing baselines on three real-world benchmark datasets, demonstrating the superiority of the proposed model.</p>\",\"PeriodicalId\":49388,\"journal\":{\"name\":\"User Modeling and User-Adapted Interaction\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"User Modeling and User-Adapted Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11257-024-09391-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-024-09391-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Informative representations for forgetting-robust knowledge tracing
Tracing a student’s knowledge state is critical for teaching and learning. Knowledge tracing aims to accurately predict student performance by analyzing historical records on online education platforms. Most studies have focused on a student’s skill with interactions sequence to predict the probability of correctly answering the latest question. However, they still suffer from the challenge of information sparsity and student forgetting. Specifically, the relationship between question and skill, and the features related to question texts have not been integrated to enrich information exploration. Besides, modeling forgetting behavior remains a challenge in assessing a student’s learning gains. In this paper, we present a novel model, namely Informative Representations for Forgetting-Robust Knowledge Tracing (IFKT). IFKT utilizes a light graph convolutional network to capture various relational structures via embedding propagation. Then, the embeddings are assembled with rich interaction features separately as the powerful representation. Furthermore, attention weights assignments are individualized using the relative positions, in addition to the relevance between the current question with historical interaction representations. Finally, we compare IFKT against seven knowledge tracing baselines on three real-world benchmark datasets, demonstrating the superiority of the proposed model.
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems