Maxime Giteau, Michela F. Picardi, Georgia T. Papadakis
{"title":"热光电效应的热力学性能系数","authors":"Maxime Giteau, Michela F. Picardi, Georgia T. Papadakis","doi":"10.1117/1.jpe.14.042402","DOIUrl":null,"url":null,"abstract":"Comparing the performance of thermophotovoltaic (TPV) devices is challenging due to a lack of standard operation conditions. Here, we propose a universal figure of merit (FOM) that can be used to evaluate the performance of TPV devices that operate in the far-field regime relative to their thermodynamic bounds. The introduced FOM alleviates temperature dependence and accounts for the fundamental trade-off between power density and efficiency. Based on this FOM, we present a classification of TPV performances reported in recent experiments.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"162 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic figure of merit for thermophotovoltaics\",\"authors\":\"Maxime Giteau, Michela F. Picardi, Georgia T. Papadakis\",\"doi\":\"10.1117/1.jpe.14.042402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparing the performance of thermophotovoltaic (TPV) devices is challenging due to a lack of standard operation conditions. Here, we propose a universal figure of merit (FOM) that can be used to evaluate the performance of TPV devices that operate in the far-field regime relative to their thermodynamic bounds. The introduced FOM alleviates temperature dependence and accounts for the fundamental trade-off between power density and efficiency. Based on this FOM, we present a classification of TPV performances reported in recent experiments.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jpe.14.042402\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jpe.14.042402","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermodynamic figure of merit for thermophotovoltaics
Comparing the performance of thermophotovoltaic (TPV) devices is challenging due to a lack of standard operation conditions. Here, we propose a universal figure of merit (FOM) that can be used to evaluate the performance of TPV devices that operate in the far-field regime relative to their thermodynamic bounds. The introduced FOM alleviates temperature dependence and accounts for the fundamental trade-off between power density and efficiency. Based on this FOM, we present a classification of TPV performances reported in recent experiments.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.