基于深度强化学习算法的自动驾驶联合资源分配和安全冗余

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-02-08 DOI:10.1049/itr2.12489
Han Zhang, Hongbin Liang, Lei Wang, Yiting Yao, Bin Lin, Dongmei Zhao
{"title":"基于深度强化学习算法的自动驾驶联合资源分配和安全冗余","authors":"Han Zhang,&nbsp;Hongbin Liang,&nbsp;Lei Wang,&nbsp;Yiting Yao,&nbsp;Bin Lin,&nbsp;Dongmei Zhao","doi":"10.1049/itr2.12489","DOIUrl":null,"url":null,"abstract":"<p>Autonomous vehicles navigating urban roads require technology that combines low latency with high computing power. The limited resources of the vehicle itself compel it to offload task requirements to edge server (ES) for processing assistance. However, as the number of vehicles continues to increase, how edge servers reasonably allocate limited resources to autonomous vehicles becomes critical to the success of urban intelligent transportation services. This paper establishes an urban road scenario with multiple autonomous vehicles and an edge computing server and considers two main driving behaviour transition resource requests, namely car-following behaviour requests and lane-changing behaviour requests. Simultaneously, acknowledging that vehicles may encounter unforeseen traffic hazards when switching driving behaviours, a safety redundancy setting strategy is employed to allocate additional resources to the vehicle to ensure safety and model the vehicle resource allocation problem in the autonomous driving system. Double-deep Q-network (DDQN) is then used to solve this model and maximize the total system utility by comprehensively considering resource costs, system revenue, and autonomous vehicle safety. Finally, results from the simulation experiment indicate that the proposed dynamic resource allocation scheme, based on deep reinforcement learning for autonomous vehicles under edge computing, not only greatly improves the system's benefits and reduces processing delays compared to traditional greedy algorithms and value iteration, but also effectively ensures security.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12489","citationCount":"0","resultStr":"{\"title\":\"Joint resource allocation and security redundancy for autonomous driving based on deep reinforcement learning algorithm\",\"authors\":\"Han Zhang,&nbsp;Hongbin Liang,&nbsp;Lei Wang,&nbsp;Yiting Yao,&nbsp;Bin Lin,&nbsp;Dongmei Zhao\",\"doi\":\"10.1049/itr2.12489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autonomous vehicles navigating urban roads require technology that combines low latency with high computing power. The limited resources of the vehicle itself compel it to offload task requirements to edge server (ES) for processing assistance. However, as the number of vehicles continues to increase, how edge servers reasonably allocate limited resources to autonomous vehicles becomes critical to the success of urban intelligent transportation services. This paper establishes an urban road scenario with multiple autonomous vehicles and an edge computing server and considers two main driving behaviour transition resource requests, namely car-following behaviour requests and lane-changing behaviour requests. Simultaneously, acknowledging that vehicles may encounter unforeseen traffic hazards when switching driving behaviours, a safety redundancy setting strategy is employed to allocate additional resources to the vehicle to ensure safety and model the vehicle resource allocation problem in the autonomous driving system. Double-deep Q-network (DDQN) is then used to solve this model and maximize the total system utility by comprehensively considering resource costs, system revenue, and autonomous vehicle safety. Finally, results from the simulation experiment indicate that the proposed dynamic resource allocation scheme, based on deep reinforcement learning for autonomous vehicles under edge computing, not only greatly improves the system's benefits and reduces processing delays compared to traditional greedy algorithms and value iteration, but also effectively ensures security.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12489\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12489\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12489","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在城市道路上行驶的自动驾驶汽车需要兼具低延迟和高计算能力的技术。车辆本身有限的资源迫使它将任务需求卸载到边缘服务器 (ES) 上,以获得处理帮助。然而,随着车辆数量的不断增加,边缘服务器如何将有限的资源合理分配给自动驾驶车辆成为城市智能交通服务成功与否的关键。本文建立了一个有多辆自动驾驶车辆和一个边缘计算服务器的城市道路场景,并考虑了两种主要的驾驶行为转换资源请求,即跟车行为请求和变道行为请求。同时,考虑到车辆在切换驾驶行为时可能会遇到不可预见的交通危险,采用安全冗余设置策略为车辆分配额外资源以确保安全,并对自动驾驶系统中的车辆资源分配问题进行建模。然后使用双深 Q 网络(DDQN)来求解该模型,并综合考虑资源成本、系统收益和自动驾驶车辆安全性,实现系统总效用最大化。最后,仿真实验结果表明,所提出的基于深度强化学习的边缘计算下自动驾驶车辆动态资源分配方案,与传统的贪婪算法和数值迭代相比,不仅大大提高了系统效益,减少了处理延迟,而且有效地保证了安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint resource allocation and security redundancy for autonomous driving based on deep reinforcement learning algorithm

Autonomous vehicles navigating urban roads require technology that combines low latency with high computing power. The limited resources of the vehicle itself compel it to offload task requirements to edge server (ES) for processing assistance. However, as the number of vehicles continues to increase, how edge servers reasonably allocate limited resources to autonomous vehicles becomes critical to the success of urban intelligent transportation services. This paper establishes an urban road scenario with multiple autonomous vehicles and an edge computing server and considers two main driving behaviour transition resource requests, namely car-following behaviour requests and lane-changing behaviour requests. Simultaneously, acknowledging that vehicles may encounter unforeseen traffic hazards when switching driving behaviours, a safety redundancy setting strategy is employed to allocate additional resources to the vehicle to ensure safety and model the vehicle resource allocation problem in the autonomous driving system. Double-deep Q-network (DDQN) is then used to solve this model and maximize the total system utility by comprehensively considering resource costs, system revenue, and autonomous vehicle safety. Finally, results from the simulation experiment indicate that the proposed dynamic resource allocation scheme, based on deep reinforcement learning for autonomous vehicles under edge computing, not only greatly improves the system's benefits and reduces processing delays compared to traditional greedy algorithms and value iteration, but also effectively ensures security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis ADWNet: An improved detector based on YOLOv8 for application in adverse weather for autonomous driving Creep slope estimation for assessing adhesion in the wheel/rail contact Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach Driver distraction and fatigue detection in images using ME-YOLOv8 algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1