Emmerson R. Wilson, Katerina Basque, Meaghan MacDonald, Amelia F. MacKenzie, Michelle Hodgson, Robin Stuart, Truis Smith-Palmer, Russell C. Wyeth
{"title":"生物降解表面活性剂无法改善聚二甲基硅氧烷的防污或污垢释放性能","authors":"Emmerson R. Wilson, Katerina Basque, Meaghan MacDonald, Amelia F. MacKenzie, Michelle Hodgson, Robin Stuart, Truis Smith-Palmer, Russell C. Wyeth","doi":"10.1007/s11998-023-00884-2","DOIUrl":null,"url":null,"abstract":"<div><p>Surfaces that combine low-toxicity antifouling effects with fouling-release properties are an intriguing possibility for developing effective measures against marine biofouling. This study field tested siloxane-based fouling-release surfaces enhanced by adding biodegradable surfactants. Two different surfactants were added to a standard polydimethylsiloxane (PDMS) surface, as well as to PDMS soaked in silicone oil, and compared to controls without surfactant augmentation. Antifouling and fouling-release performance was assessed over 11 to 13 weeks against the most prominent fouling species at three locations in Cape Breton, Nova Scotia, Canada. Using nonlinear mixed effect analysis, surfactants were found to have little impact on the progression of biofouling on PDMS without silicone oil in all three sites and had no additional impact on the progression of biofouling on PDMS augmented with silicone oil. (Silicone oil was found to delay biofouling in PDMS without other additives.) Given the known toxicity of some surfactants to invertebrate larvae, future efforts should consider either higher concentrations or alternative varieties for incorporation into fouling-release surfaces.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 4","pages":"1217 - 1229"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable surfactants do not improve antifouling or fouling-release performance of polydimethylsiloxane\",\"authors\":\"Emmerson R. Wilson, Katerina Basque, Meaghan MacDonald, Amelia F. MacKenzie, Michelle Hodgson, Robin Stuart, Truis Smith-Palmer, Russell C. Wyeth\",\"doi\":\"10.1007/s11998-023-00884-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surfaces that combine low-toxicity antifouling effects with fouling-release properties are an intriguing possibility for developing effective measures against marine biofouling. This study field tested siloxane-based fouling-release surfaces enhanced by adding biodegradable surfactants. Two different surfactants were added to a standard polydimethylsiloxane (PDMS) surface, as well as to PDMS soaked in silicone oil, and compared to controls without surfactant augmentation. Antifouling and fouling-release performance was assessed over 11 to 13 weeks against the most prominent fouling species at three locations in Cape Breton, Nova Scotia, Canada. Using nonlinear mixed effect analysis, surfactants were found to have little impact on the progression of biofouling on PDMS without silicone oil in all three sites and had no additional impact on the progression of biofouling on PDMS augmented with silicone oil. (Silicone oil was found to delay biofouling in PDMS without other additives.) Given the known toxicity of some surfactants to invertebrate larvae, future efforts should consider either higher concentrations or alternative varieties for incorporation into fouling-release surfaces.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"21 4\",\"pages\":\"1217 - 1229\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-023-00884-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-023-00884-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Biodegradable surfactants do not improve antifouling or fouling-release performance of polydimethylsiloxane
Surfaces that combine low-toxicity antifouling effects with fouling-release properties are an intriguing possibility for developing effective measures against marine biofouling. This study field tested siloxane-based fouling-release surfaces enhanced by adding biodegradable surfactants. Two different surfactants were added to a standard polydimethylsiloxane (PDMS) surface, as well as to PDMS soaked in silicone oil, and compared to controls without surfactant augmentation. Antifouling and fouling-release performance was assessed over 11 to 13 weeks against the most prominent fouling species at three locations in Cape Breton, Nova Scotia, Canada. Using nonlinear mixed effect analysis, surfactants were found to have little impact on the progression of biofouling on PDMS without silicone oil in all three sites and had no additional impact on the progression of biofouling on PDMS augmented with silicone oil. (Silicone oil was found to delay biofouling in PDMS without other additives.) Given the known toxicity of some surfactants to invertebrate larvae, future efforts should consider either higher concentrations or alternative varieties for incorporation into fouling-release surfaces.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.