基于 skew-t 分布的删减数据有限混合回归模型

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-02-10 DOI:10.1007/s00180-024-01459-4
Jiwon Park, Dipak K. Dey, Víctor H. Lachos
{"title":"基于 skew-t 分布的删减数据有限混合回归模型","authors":"Jiwon Park, Dipak K. Dey, Víctor H. Lachos","doi":"10.1007/s00180-024-01459-4","DOIUrl":null,"url":null,"abstract":"<p>Finite mixture models have been widely used to model and analyze data from heterogeneous populations. In practical scenarios, these types of data often confront upper and/or lower detection limits due to the constraints imposed by experimental apparatuses. Additional complexity arises when measures of each mixture component significantly deviate from the normal distribution, manifesting characteristics such as multimodality, asymmetry, and heavy-tailed behavior, simultaneously. This paper introduces a flexible model tailored for censored data to address these intricacies, leveraging the finite mixture of skew-<i>t</i> distributions. An Expectation Conditional Maximization Either (ECME) algorithm, is developed to efficiently derive parameter estimates by iteratively maximizing the observed data log-likelihood function. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated skew-<i>t</i> distributions. Moreover, a method based on general information principles is presented for approximating the asymptotic covariance matrix of the estimators. Results obtained from the analysis of both simulated and real datasets demonstrate the proposed method’s effectiveness.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"38 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite mixture of regression models for censored data based on the skew-t distribution\",\"authors\":\"Jiwon Park, Dipak K. Dey, Víctor H. Lachos\",\"doi\":\"10.1007/s00180-024-01459-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finite mixture models have been widely used to model and analyze data from heterogeneous populations. In practical scenarios, these types of data often confront upper and/or lower detection limits due to the constraints imposed by experimental apparatuses. Additional complexity arises when measures of each mixture component significantly deviate from the normal distribution, manifesting characteristics such as multimodality, asymmetry, and heavy-tailed behavior, simultaneously. This paper introduces a flexible model tailored for censored data to address these intricacies, leveraging the finite mixture of skew-<i>t</i> distributions. An Expectation Conditional Maximization Either (ECME) algorithm, is developed to efficiently derive parameter estimates by iteratively maximizing the observed data log-likelihood function. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated skew-<i>t</i> distributions. Moreover, a method based on general information principles is presented for approximating the asymptotic covariance matrix of the estimators. Results obtained from the analysis of both simulated and real datasets demonstrate the proposed method’s effectiveness.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01459-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01459-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

有限混合物模型已被广泛用于异质群体数据的建模和分析。在实际应用中,由于实验设备的限制,这些类型的数据往往面临检测上限和/或下限的问题。当每个混合物成分的测量值明显偏离正态分布,同时表现出多模态、不对称和重尾行为等特征时,就会产生额外的复杂性。本文利用倾斜-t 分布的有限混合物,介绍了一种为删减数据定制的灵活模型,以解决这些错综复杂的问题。本文开发了一种期望条件最大化算法(ECME),通过迭代最大化观测数据的对数似然函数,有效地得出参数估计。该算法在 E 步有闭式表达式,依赖于截断偏斜-t 分布的均值和方差公式。此外,还提出了一种基于一般信息原理的方法,用于逼近估计值的渐近协方差矩阵。对模拟数据集和真实数据集的分析结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite mixture of regression models for censored data based on the skew-t distribution

Finite mixture models have been widely used to model and analyze data from heterogeneous populations. In practical scenarios, these types of data often confront upper and/or lower detection limits due to the constraints imposed by experimental apparatuses. Additional complexity arises when measures of each mixture component significantly deviate from the normal distribution, manifesting characteristics such as multimodality, asymmetry, and heavy-tailed behavior, simultaneously. This paper introduces a flexible model tailored for censored data to address these intricacies, leveraging the finite mixture of skew-t distributions. An Expectation Conditional Maximization Either (ECME) algorithm, is developed to efficiently derive parameter estimates by iteratively maximizing the observed data log-likelihood function. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated skew-t distributions. Moreover, a method based on general information principles is presented for approximating the asymptotic covariance matrix of the estimators. Results obtained from the analysis of both simulated and real datasets demonstrate the proposed method’s effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1