{"title":"晶界在有机-无机混合包光体太阳能电池中的作用及其当前的增强策略:综述","authors":"Jindan Zhang, Shicheng Tang, Mengqi Zhu, Zhenghong Li, Zhibin Cheng, Shengchang Xiang, Zhangjing Zhang","doi":"10.1002/eem2.12696","DOIUrl":null,"url":null,"abstract":"<p>Grain boundaries (GBs) in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities. Thus, abundant works have been carried out to explore their properties and then try to solve the induced problems. Currently, two important issues remain. First, the role of GBs in charge carrier dynamics is unclear due to their component complexity/defect tolerance nature and the insufficiency in testing accuracy. Some works conclude that GBs are benign, while others consider GBs as carrier recombination centers. Things for sure are the deterioration in ion transport and perovskite decomposition. Second, to solve the known hazards of GBs, a lot of additives have been added to anchoring ions and passivate defects. But in most of those works, GBs and perovskite surfaces are treated in the same manner ignoring the fact that GB is essentially a homogeneous junction in a narrow and slender space, while surface is a heterogeneous junction with a stratified structure. In this review, we focus on works insight into GBs and additives for them. Additionally, we also discuss the prospects of the maturity of GB exploration toward upscaling the manufacture of perovskite photovoltaic and related optoelectronic devices.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12696","citationCount":"0","resultStr":"{\"title\":\"The Role of Grain Boundaries in Organic–Inorganic Hybrid Perovskite Solar Cells and its Current Enhancement Strategies: A Review\",\"authors\":\"Jindan Zhang, Shicheng Tang, Mengqi Zhu, Zhenghong Li, Zhibin Cheng, Shengchang Xiang, Zhangjing Zhang\",\"doi\":\"10.1002/eem2.12696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Grain boundaries (GBs) in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities. Thus, abundant works have been carried out to explore their properties and then try to solve the induced problems. Currently, two important issues remain. First, the role of GBs in charge carrier dynamics is unclear due to their component complexity/defect tolerance nature and the insufficiency in testing accuracy. Some works conclude that GBs are benign, while others consider GBs as carrier recombination centers. Things for sure are the deterioration in ion transport and perovskite decomposition. Second, to solve the known hazards of GBs, a lot of additives have been added to anchoring ions and passivate defects. But in most of those works, GBs and perovskite surfaces are treated in the same manner ignoring the fact that GB is essentially a homogeneous junction in a narrow and slender space, while surface is a heterogeneous junction with a stratified structure. In this review, we focus on works insight into GBs and additives for them. Additionally, we also discuss the prospects of the maturity of GB exploration toward upscaling the manufacture of perovskite photovoltaic and related optoelectronic devices.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12696\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12696\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12696","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Role of Grain Boundaries in Organic–Inorganic Hybrid Perovskite Solar Cells and its Current Enhancement Strategies: A Review
Grain boundaries (GBs) in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities. Thus, abundant works have been carried out to explore their properties and then try to solve the induced problems. Currently, two important issues remain. First, the role of GBs in charge carrier dynamics is unclear due to their component complexity/defect tolerance nature and the insufficiency in testing accuracy. Some works conclude that GBs are benign, while others consider GBs as carrier recombination centers. Things for sure are the deterioration in ion transport and perovskite decomposition. Second, to solve the known hazards of GBs, a lot of additives have been added to anchoring ions and passivate defects. But in most of those works, GBs and perovskite surfaces are treated in the same manner ignoring the fact that GB is essentially a homogeneous junction in a narrow and slender space, while surface is a heterogeneous junction with a stratified structure. In this review, we focus on works insight into GBs and additives for them. Additionally, we also discuss the prospects of the maturity of GB exploration toward upscaling the manufacture of perovskite photovoltaic and related optoelectronic devices.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.