{"title":"微结构对多元素合金氧化的影响","authors":"Michael J. Pavel, Mark L. Weaver","doi":"10.1007/s11085-024-10225-2","DOIUrl":null,"url":null,"abstract":"<div><p>The impacts of thermal treatment on the precipitate morphology and oxidation behavior of a dual-phase (FCC + L1<sub>2</sub>) multi-principal element alloy (MPEA), Ni<sub>45</sub>Co<sub>17</sub>Cr<sub>14</sub>Fe<sub>12</sub>Al<sub>7</sub>Ti<sub>5</sub>, was studied at 1000 °C via isothermal and cyclic testing. Thermogravimetric analysis and subsequent characterization revealed that smaller precipitates had an increased capacity to form protective sub-surface oxide layers which mitigated total mass gain. The smaller-precipitate-containing samples exhibited a decrease in thickness of the primary Cr<sub>2</sub>O<sub>3</sub> scale and parabolic growth rate. Mechanistically this behavior is believed to stem from the increased growth rate of initial Al<sub>2</sub>O<sub>3</sub> nuclei and decreased inter-precipitate spacing which results in faster lateral diffusion and agglomeration.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"389 - 412"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural Impacts on the Oxidation of Multi-Principal Element Alloys\",\"authors\":\"Michael J. Pavel, Mark L. Weaver\",\"doi\":\"10.1007/s11085-024-10225-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The impacts of thermal treatment on the precipitate morphology and oxidation behavior of a dual-phase (FCC + L1<sub>2</sub>) multi-principal element alloy (MPEA), Ni<sub>45</sub>Co<sub>17</sub>Cr<sub>14</sub>Fe<sub>12</sub>Al<sub>7</sub>Ti<sub>5</sub>, was studied at 1000 °C via isothermal and cyclic testing. Thermogravimetric analysis and subsequent characterization revealed that smaller precipitates had an increased capacity to form protective sub-surface oxide layers which mitigated total mass gain. The smaller-precipitate-containing samples exhibited a decrease in thickness of the primary Cr<sub>2</sub>O<sub>3</sub> scale and parabolic growth rate. Mechanistically this behavior is believed to stem from the increased growth rate of initial Al<sub>2</sub>O<sub>3</sub> nuclei and decreased inter-precipitate spacing which results in faster lateral diffusion and agglomeration.</p></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 3\",\"pages\":\"389 - 412\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-024-10225-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10225-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Microstructural Impacts on the Oxidation of Multi-Principal Element Alloys
The impacts of thermal treatment on the precipitate morphology and oxidation behavior of a dual-phase (FCC + L12) multi-principal element alloy (MPEA), Ni45Co17Cr14Fe12Al7Ti5, was studied at 1000 °C via isothermal and cyclic testing. Thermogravimetric analysis and subsequent characterization revealed that smaller precipitates had an increased capacity to form protective sub-surface oxide layers which mitigated total mass gain. The smaller-precipitate-containing samples exhibited a decrease in thickness of the primary Cr2O3 scale and parabolic growth rate. Mechanistically this behavior is believed to stem from the increased growth rate of initial Al2O3 nuclei and decreased inter-precipitate spacing which results in faster lateral diffusion and agglomeration.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.