Edgar Ramirez Huerta, Muhammad Muddasar, Maurice N. Collins
{"title":"桦木中的酶水解木质素和牛皮纸木质素:功能性生物基材料的来源","authors":"Edgar Ramirez Huerta, Muhammad Muddasar, Maurice N. Collins","doi":"10.1007/s00226-024-01531-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the pursuit of sustainable biomass utilization, this study investigates the hydrothermal treatment of birchwood and its subsequent impact on enzymatic hydrolysis lignin (EHL). Additionally, birchwood undergoes processing with NaOH (4% w/w) within a Parr reactor to precipitate lignin from the black liquor, resulting in lignin-rich substrates (LRSs) which are then subject to thorough characterization. Notably, EHL produced after hydrothermal pretreatment at 190 °C exhibits the highest lignin content at 67%, while kraft lignin (KL) obtained at 140 °C (pH 1.5) produces 65% lignin content. Among these LRSs, the KL sample produced at 190 °C (pH 4) stands out, displaying a robust aromatic skeletal structure and an abundance of methoxyl groups, primarily owing to its high purity. Furthermore, for these LRSs' it is shown that chemical configuration influences their thermal behaviour, allowing the lignin to be tailored for diverse applications, from low melting point materials to carbonaceous materials capable of withstanding temperatures exceeding 700 °C. This comprehensive understanding of the chemical, thermal, and physical attributes of LRSs not only enriches our knowledge of lignin-rich substrates but also paves the way for the development of sustainable bio-based materials, marking a step towards sustainable materials development.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 2","pages":"423 - 440"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01531-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Enzymatic hydrolysis lignin and kraft lignin from birch wood: a source of functional bio-based materials\",\"authors\":\"Edgar Ramirez Huerta, Muhammad Muddasar, Maurice N. Collins\",\"doi\":\"10.1007/s00226-024-01531-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the pursuit of sustainable biomass utilization, this study investigates the hydrothermal treatment of birchwood and its subsequent impact on enzymatic hydrolysis lignin (EHL). Additionally, birchwood undergoes processing with NaOH (4% w/w) within a Parr reactor to precipitate lignin from the black liquor, resulting in lignin-rich substrates (LRSs) which are then subject to thorough characterization. Notably, EHL produced after hydrothermal pretreatment at 190 °C exhibits the highest lignin content at 67%, while kraft lignin (KL) obtained at 140 °C (pH 1.5) produces 65% lignin content. Among these LRSs, the KL sample produced at 190 °C (pH 4) stands out, displaying a robust aromatic skeletal structure and an abundance of methoxyl groups, primarily owing to its high purity. Furthermore, for these LRSs' it is shown that chemical configuration influences their thermal behaviour, allowing the lignin to be tailored for diverse applications, from low melting point materials to carbonaceous materials capable of withstanding temperatures exceeding 700 °C. This comprehensive understanding of the chemical, thermal, and physical attributes of LRSs not only enriches our knowledge of lignin-rich substrates but also paves the way for the development of sustainable bio-based materials, marking a step towards sustainable materials development.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 2\",\"pages\":\"423 - 440\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00226-024-01531-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01531-8\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01531-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 为实现生物质的可持续利用,本研究调查了桦木的水热处理及其对酶水解木质素(EHL)的影响。此外,在帕尔反应器中用 NaOH(4% w/w)处理桦木,从黑液中析出木质素,得到富含木质素的基质(LRS),然后对其进行全面表征。值得注意的是,在 190 °C 下进行水热预处理后产生的 EHL 木质素含量最高,达到 67%,而在 140 °C 下(pH 值为 1.5)获得的牛皮纸木质素(KL)的木质素含量为 65%。在这些 LRS 中,190 °C(pH 值为 4)下生产的 KL 样品脱颖而出,显示出强大的芳香族骨架结构和丰富的甲氧基,这主要归功于它的高纯度。此外,对于这些 LRS 来说,化学结构会影响它们的热性能,从而使木质素可用于各种不同的应用,从低熔点材料到能够承受 700 °C 以上高温的碳质材料。对 LRS 化学、热学和物理属性的全面了解不仅丰富了我们对富含木质素的基质的认识,而且为开发可持续生物基材料铺平了道路,标志着向可持续材料开发迈出了一步。
Enzymatic hydrolysis lignin and kraft lignin from birch wood: a source of functional bio-based materials
In the pursuit of sustainable biomass utilization, this study investigates the hydrothermal treatment of birchwood and its subsequent impact on enzymatic hydrolysis lignin (EHL). Additionally, birchwood undergoes processing with NaOH (4% w/w) within a Parr reactor to precipitate lignin from the black liquor, resulting in lignin-rich substrates (LRSs) which are then subject to thorough characterization. Notably, EHL produced after hydrothermal pretreatment at 190 °C exhibits the highest lignin content at 67%, while kraft lignin (KL) obtained at 140 °C (pH 1.5) produces 65% lignin content. Among these LRSs, the KL sample produced at 190 °C (pH 4) stands out, displaying a robust aromatic skeletal structure and an abundance of methoxyl groups, primarily owing to its high purity. Furthermore, for these LRSs' it is shown that chemical configuration influences their thermal behaviour, allowing the lignin to be tailored for diverse applications, from low melting point materials to carbonaceous materials capable of withstanding temperatures exceeding 700 °C. This comprehensive understanding of the chemical, thermal, and physical attributes of LRSs not only enriches our knowledge of lignin-rich substrates but also paves the way for the development of sustainable bio-based materials, marking a step towards sustainable materials development.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.