S. Kandemir, Sibel Yöyler, Rahul Kumar, Maksim Antonov, H. Dieringa
{"title":"石墨烯纳米微粒含量对自润滑 ZE10 镁合金纳米复合材料机械性能和高温摩擦学性能的影响","authors":"S. Kandemir, Sibel Yöyler, Rahul Kumar, Maksim Antonov, H. Dieringa","doi":"10.3390/lubricants12020052","DOIUrl":null,"url":null,"abstract":"Magnesium (Mg) and graphene in alloy formulations are of paramount importance for lightweight engineering applications. In the present study, ZE10 Mg-alloy-based nanocomposites reinforced with graphene nanoplatelets (GNPs) having a thickness of 10–20 nm were fabricated via ultrasound-assisted stir casting. The effect of GNP contents (0.25, 0.5, and 1.0 wt.%) on the microstructure, Vickers hardness, and tensile properties of nanocomposites was investigated. Further, tribological studies were performed under a ball-on-disc sliding wear configuration against a bearing ball counterbody, at room and elevated temperatures of 100 °C and 200 °C, to comprehend temperature-induced wear mechanisms and friction evolution. It was revealed that the GNP addition resulted in grain coarsening and increased porosity rate of the Mg alloy. While the composites exhibited improved hardness by 20–35% at room temperature and 100 °C, a minor change was observed in their hardness and tensile yield strength values at 200 °C with respect to the GNP-free alloy. A notable improvement in lowering and stabilizing friction (coefficient of friction at 200 °C~0.25) and wear values was seen for the self-lubricating GNP-added composites at all sliding temperatures. The worn surface morphology indicated a simultaneous occurrence of abrasive and adhesive wear mode in all samples at room temperature and 100 °C, while delamination and smearing along with debris compaction (tribolayer protection) were the dominant mechanisms of wear at 200 °C. Inclusively, the results advocate steady frictional conditions, improved wear resistance, and favorable wear-protective mechanisms for the Mg alloy–GNP nanocomposites at room and elevated temperatures.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"36 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Graphene Nanoplatelet Content on Mechanical and Elevated-Temperature Tribological Performance of Self-Lubricating ZE10 Magnesium Alloy Nanocomposites\",\"authors\":\"S. Kandemir, Sibel Yöyler, Rahul Kumar, Maksim Antonov, H. Dieringa\",\"doi\":\"10.3390/lubricants12020052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium (Mg) and graphene in alloy formulations are of paramount importance for lightweight engineering applications. In the present study, ZE10 Mg-alloy-based nanocomposites reinforced with graphene nanoplatelets (GNPs) having a thickness of 10–20 nm were fabricated via ultrasound-assisted stir casting. The effect of GNP contents (0.25, 0.5, and 1.0 wt.%) on the microstructure, Vickers hardness, and tensile properties of nanocomposites was investigated. Further, tribological studies were performed under a ball-on-disc sliding wear configuration against a bearing ball counterbody, at room and elevated temperatures of 100 °C and 200 °C, to comprehend temperature-induced wear mechanisms and friction evolution. It was revealed that the GNP addition resulted in grain coarsening and increased porosity rate of the Mg alloy. While the composites exhibited improved hardness by 20–35% at room temperature and 100 °C, a minor change was observed in their hardness and tensile yield strength values at 200 °C with respect to the GNP-free alloy. A notable improvement in lowering and stabilizing friction (coefficient of friction at 200 °C~0.25) and wear values was seen for the self-lubricating GNP-added composites at all sliding temperatures. The worn surface morphology indicated a simultaneous occurrence of abrasive and adhesive wear mode in all samples at room temperature and 100 °C, while delamination and smearing along with debris compaction (tribolayer protection) were the dominant mechanisms of wear at 200 °C. Inclusively, the results advocate steady frictional conditions, improved wear resistance, and favorable wear-protective mechanisms for the Mg alloy–GNP nanocomposites at room and elevated temperatures.\",\"PeriodicalId\":502914,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12020052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12020052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
合金配方中的镁(Mg)和石墨烯对于轻质工程应用至关重要。在本研究中,通过超声辅助搅拌铸造法制造了厚度为 10-20 纳米的石墨烯纳米板(GNPs)增强 ZE10 镁合金基纳米复合材料。研究了 GNP 含量(0.25、0.5 和 1.0 wt.%)对纳米复合材料微观结构、维氏硬度和拉伸性能的影响。此外,还在 100 ℃ 和 200 ℃ 的室温和高温条件下进行了球盘滑动摩擦研究,以了解温度引起的磨损机制和摩擦演变。结果表明,添加 GNP 会导致镁合金的晶粒粗化和孔隙率增加。虽然复合材料在室温和 100 °C 下的硬度提高了 20-35%,但与不含 GNP 的合金相比,在 200 °C 下的硬度和拉伸屈服强度值变化不大。在所有滑动温度下,添加了 GNP 的自润滑复合材料在降低和稳定摩擦(200 °C 时的摩擦系数~0.25)和磨损值方面都有显著改善。磨损表面形态表明,在室温和 100 °C 时,所有样品都同时出现了研磨和粘着磨损模式,而在 200 °C 时,分层和涂抹以及碎屑压实(摩擦层保护)是磨损的主要机制。总之,这些结果表明镁合金-GNP 纳米复合材料在室温和高温下具有稳定的摩擦条件、更好的耐磨性和有利的磨损保护机制。
Effect of Graphene Nanoplatelet Content on Mechanical and Elevated-Temperature Tribological Performance of Self-Lubricating ZE10 Magnesium Alloy Nanocomposites
Magnesium (Mg) and graphene in alloy formulations are of paramount importance for lightweight engineering applications. In the present study, ZE10 Mg-alloy-based nanocomposites reinforced with graphene nanoplatelets (GNPs) having a thickness of 10–20 nm were fabricated via ultrasound-assisted stir casting. The effect of GNP contents (0.25, 0.5, and 1.0 wt.%) on the microstructure, Vickers hardness, and tensile properties of nanocomposites was investigated. Further, tribological studies were performed under a ball-on-disc sliding wear configuration against a bearing ball counterbody, at room and elevated temperatures of 100 °C and 200 °C, to comprehend temperature-induced wear mechanisms and friction evolution. It was revealed that the GNP addition resulted in grain coarsening and increased porosity rate of the Mg alloy. While the composites exhibited improved hardness by 20–35% at room temperature and 100 °C, a minor change was observed in their hardness and tensile yield strength values at 200 °C with respect to the GNP-free alloy. A notable improvement in lowering and stabilizing friction (coefficient of friction at 200 °C~0.25) and wear values was seen for the self-lubricating GNP-added composites at all sliding temperatures. The worn surface morphology indicated a simultaneous occurrence of abrasive and adhesive wear mode in all samples at room temperature and 100 °C, while delamination and smearing along with debris compaction (tribolayer protection) were the dominant mechanisms of wear at 200 °C. Inclusively, the results advocate steady frictional conditions, improved wear resistance, and favorable wear-protective mechanisms for the Mg alloy–GNP nanocomposites at room and elevated temperatures.