使用智能骨料传感器的混凝土衰减特性:P 波传播的实验和数值模拟

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2024-02-06 DOI:10.1177/1045389x231221132
Xiaohui Sun, Shuli Fan, Chunguang Liu
{"title":"使用智能骨料传感器的混凝土衰减特性:P 波传播的实验和数值模拟","authors":"Xiaohui Sun, Shuli Fan, Chunguang Liu","doi":"10.1177/1045389x231221132","DOIUrl":null,"url":null,"abstract":"Concrete is a highly heterogeneous construction material. Waves that propagate through concrete face significant reflection, scattering, and attenuation issues. Understanding the behavior of waves as they propagate through concrete and arrive at a sensor has generated much attention, especially for developing real-world field applications. In this study, a predictive model of attenuated P-wave propagation using Rayleigh damping is presented. The method used frequency excitations ranging from 20 to 200 kHz and smart aggregates (SAs) were embedded in a concrete specimen to excite and receive P-waves. Moreover, 10 distances were marked opposite the exciter at two propagation paths. In the simulations and experiments, signal processing methods were utilized to extract the first arrival packet for calculating amplitude attenuation. The P-wave damping coefficient was modeled using the multi-physical finite element method, and the results of the predictive model were compared with the experimental results. A discussion on the utilization of frequency-dependent attenuation coefficients was conducted to explore potential P-wave attenuation factors and their respective contributions to the overall attenuation. Numerical studies have demonstrated a strong correlation with the experiments when an appropriate level of material damping coefficient was considered. By enhancing the overall comprehension of the P-wave damping coefficient and attenuation characteristics within concrete, damage detection techniques based on P-waves can be improved.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attenuation characteristics of concrete using smart aggregate transducers: Experiments and numerical simulations of P-wave propagation\",\"authors\":\"Xiaohui Sun, Shuli Fan, Chunguang Liu\",\"doi\":\"10.1177/1045389x231221132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete is a highly heterogeneous construction material. Waves that propagate through concrete face significant reflection, scattering, and attenuation issues. Understanding the behavior of waves as they propagate through concrete and arrive at a sensor has generated much attention, especially for developing real-world field applications. In this study, a predictive model of attenuated P-wave propagation using Rayleigh damping is presented. The method used frequency excitations ranging from 20 to 200 kHz and smart aggregates (SAs) were embedded in a concrete specimen to excite and receive P-waves. Moreover, 10 distances were marked opposite the exciter at two propagation paths. In the simulations and experiments, signal processing methods were utilized to extract the first arrival packet for calculating amplitude attenuation. The P-wave damping coefficient was modeled using the multi-physical finite element method, and the results of the predictive model were compared with the experimental results. A discussion on the utilization of frequency-dependent attenuation coefficients was conducted to explore potential P-wave attenuation factors and their respective contributions to the overall attenuation. Numerical studies have demonstrated a strong correlation with the experiments when an appropriate level of material damping coefficient was considered. By enhancing the overall comprehension of the P-wave damping coefficient and attenuation characteristics within concrete, damage detection techniques based on P-waves can be improved.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x231221132\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231221132","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

混凝土是一种高度异质的建筑材料。波在混凝土中传播时会面临严重的反射、散射和衰减问题。了解波在混凝土中传播并到达传感器时的行为已引起广泛关注,尤其是在开发实际现场应用时。在本研究中,介绍了使用瑞利阻尼的衰减 P 波传播预测模型。该方法使用 20 至 200 kHz 的频率激励,并在混凝土试件中嵌入智能骨料(SA)以激励和接收 P 波。此外,在两条传播路径上的激励器对面标记了 10 个距离。在模拟和实验中,利用信号处理方法提取了第一个到达数据包,用于计算振幅衰减。使用多物理有限元方法建立了 P 波阻尼系数模型,并将预测模型的结果与实验结果进行了比较。对频率相关衰减系数的利用进行了讨论,以探索潜在的 P 波衰减因子及其各自对整体衰减的贡献。数值研究表明,当考虑到适当的材料阻尼系数水平时,数值研究与实验结果具有很强的相关性。通过加强对混凝土内部 P 波阻尼系数和衰减特性的整体理解,可以改进基于 P 波的损伤检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attenuation characteristics of concrete using smart aggregate transducers: Experiments and numerical simulations of P-wave propagation
Concrete is a highly heterogeneous construction material. Waves that propagate through concrete face significant reflection, scattering, and attenuation issues. Understanding the behavior of waves as they propagate through concrete and arrive at a sensor has generated much attention, especially for developing real-world field applications. In this study, a predictive model of attenuated P-wave propagation using Rayleigh damping is presented. The method used frequency excitations ranging from 20 to 200 kHz and smart aggregates (SAs) were embedded in a concrete specimen to excite and receive P-waves. Moreover, 10 distances were marked opposite the exciter at two propagation paths. In the simulations and experiments, signal processing methods were utilized to extract the first arrival packet for calculating amplitude attenuation. The P-wave damping coefficient was modeled using the multi-physical finite element method, and the results of the predictive model were compared with the experimental results. A discussion on the utilization of frequency-dependent attenuation coefficients was conducted to explore potential P-wave attenuation factors and their respective contributions to the overall attenuation. Numerical studies have demonstrated a strong correlation with the experiments when an appropriate level of material damping coefficient was considered. By enhancing the overall comprehension of the P-wave damping coefficient and attenuation characteristics within concrete, damage detection techniques based on P-waves can be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1