钢-混凝土复合梁的疲劳特性

Ayman El-Zohairy, Hani A. Salim, H. Shaaban, M. Nawar
{"title":"钢-混凝土复合梁的疲劳特性","authors":"Ayman El-Zohairy, Hani A. Salim, H. Shaaban, M. Nawar","doi":"10.3390/infrastructures9020029","DOIUrl":null,"url":null,"abstract":"Fatigue in steel–concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on composite beams with various arrangements are presented. Fatigue tests were performed up to 1,000,000 cycles using four-point loading, encompassing various ranges of shear stress at a consistent amplitude. Additionally, the effects of external post-tensioning and the strength of the shear connection were investigated. Static tests were run until failure to assess the enduring strength of the specimens subjected to fatigue. The cyclic mid-span deflections, slippages, and strains were measured during the testing. Based on the experimental findings, it was found that the damage region that the shear studs caused in the concrete slab, which resulted in a reduction in stiffness within the shear connection, grew as the loading cycles increased, leading to an increase in residual deflections and plastic slippages. Controlling the longitudinal fatigue cracks in the concrete slab was largely dependent on the strength of the shear connection between the steel beams and concrete slabs. Moreover, the applied fatigue loading range affected the propagation and distribution of fatigue cracks in the concrete slab. The strains in different parts of the composite specimens were significantly reduced by applying the external post-tensioning. With no signs of distress at the anchors, the tendons displayed excellent fatigue performance.","PeriodicalId":502683,"journal":{"name":"Infrastructures","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Characteristics of Steel–Concrete Composite Beams\",\"authors\":\"Ayman El-Zohairy, Hani A. Salim, H. Shaaban, M. Nawar\",\"doi\":\"10.3390/infrastructures9020029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue in steel–concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on composite beams with various arrangements are presented. Fatigue tests were performed up to 1,000,000 cycles using four-point loading, encompassing various ranges of shear stress at a consistent amplitude. Additionally, the effects of external post-tensioning and the strength of the shear connection were investigated. Static tests were run until failure to assess the enduring strength of the specimens subjected to fatigue. The cyclic mid-span deflections, slippages, and strains were measured during the testing. Based on the experimental findings, it was found that the damage region that the shear studs caused in the concrete slab, which resulted in a reduction in stiffness within the shear connection, grew as the loading cycles increased, leading to an increase in residual deflections and plastic slippages. Controlling the longitudinal fatigue cracks in the concrete slab was largely dependent on the strength of the shear connection between the steel beams and concrete slabs. Moreover, the applied fatigue loading range affected the propagation and distribution of fatigue cracks in the concrete slab. The strains in different parts of the composite specimens were significantly reduced by applying the external post-tensioning. With no signs of distress at the anchors, the tendons displayed excellent fatigue performance.\",\"PeriodicalId\":502683,\"journal\":{\"name\":\"Infrastructures\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/infrastructures9020029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures9020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢-混凝土复合梁的疲劳可能源于循环加载,导致应力波动,从而可能导致累积损伤,并在较长时间内最终失效。本文介绍了对不同布置的复合梁进行疲劳加载试验的结果。疲劳试验采用四点加载法,以一致的振幅进行了多达 1,000,000 次循环,包括各种剪应力范围。此外,还研究了外部后张力和剪切连接强度的影响。静态测试一直进行到失效为止,以评估疲劳试样的持久强度。测试期间还测量了周期性中跨挠度、滑移和应变。根据实验结果发现,随着加载周期的增加,剪力螺柱在混凝土板中造成的破坏区域会扩大,导致剪力连接内部的刚度降低,从而导致残余挠度和塑性滑移的增加。混凝土板纵向疲劳裂缝的控制在很大程度上取决于钢梁和混凝土板之间剪力连接的强度。此外,施加的疲劳荷载范围也会影响混凝土板疲劳裂缝的扩展和分布。采用外部后张法后,复合试样不同部位的应变明显减小。在锚固处没有出现任何锚固不良迹象的情况下,后张法钢筋显示出优异的疲劳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue Characteristics of Steel–Concrete Composite Beams
Fatigue in steel–concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on composite beams with various arrangements are presented. Fatigue tests were performed up to 1,000,000 cycles using four-point loading, encompassing various ranges of shear stress at a consistent amplitude. Additionally, the effects of external post-tensioning and the strength of the shear connection were investigated. Static tests were run until failure to assess the enduring strength of the specimens subjected to fatigue. The cyclic mid-span deflections, slippages, and strains were measured during the testing. Based on the experimental findings, it was found that the damage region that the shear studs caused in the concrete slab, which resulted in a reduction in stiffness within the shear connection, grew as the loading cycles increased, leading to an increase in residual deflections and plastic slippages. Controlling the longitudinal fatigue cracks in the concrete slab was largely dependent on the strength of the shear connection between the steel beams and concrete slabs. Moreover, the applied fatigue loading range affected the propagation and distribution of fatigue cracks in the concrete slab. The strains in different parts of the composite specimens were significantly reduced by applying the external post-tensioning. With no signs of distress at the anchors, the tendons displayed excellent fatigue performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements Traffic Flow Optimization at Toll Plaza Using Proactive Deep Learning Strategies Track Deterioration Model—State of the Art and Research Potentials Microstructural and Residual Properties of Self-Compacting Concrete Containing Waste Copper Slag as Fine Aggregate Exposed to Ambient and Elevated Temperatures Building Information Modeling/Building Energy Simulation Integration Based on Quantitative and Interpretative Interoperability Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1