外围设备对测试台产生白色蚀刻裂纹的影响

J. Wranik, Walter Holweger, Ling Wang
{"title":"外围设备对测试台产生白色蚀刻裂纹的影响","authors":"J. Wranik, Walter Holweger, Ling Wang","doi":"10.3390/lubricants12020045","DOIUrl":null,"url":null,"abstract":"White Etching Cracks (WEC) have become a subject of extensive research in material science, chemistry and lubrication, and even operational mathematics by AI learning. Initially reported in the 1960s and considered an exotic anomaly, the failures gained importance with the global rise of wind energy power and the automotive industry. Unexpectedly high failure rates in various bearing applications have led to the need for a deeper understanding and prevention of WEC. It has come a long way from materials inspection, to parametrically studying WECs on test rigs, to the understanding that WEC is a stand-alone phenomenon and sparingly related to common failures in bearing technology. It has been commonly accepted that WEC drivers have multiple dimensions, e.g., material, contact mechanics, chemistry, and electricity. The impact of these factors on WEC failures is frequently studied using test rigs at the component level, such as the FE8 test rig. The FE8 has been utilized in numerous investigations due to its ability to replicate WEC failures without requiring artificial electricity or hydrogen charging by using specific lubricant chemistry and operating conditions. However, through intensive testing, it was observed in this study that a standard material in an FE8 rig component demonstrated a profound influence on WEC formation. This paper presents the details of the testing and analysis, aiming to investigate the mechanisms of interactions between the hose material and the low reference lubricant. The results demonstrate that the chemistry of the component material plays an important role in WEC formation. This finding may have significant impact in WEC studies, especially when the FE8 rig is used.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"2010 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Peripheral Components in Test Rig Creation of White Etching Cracks\",\"authors\":\"J. Wranik, Walter Holweger, Ling Wang\",\"doi\":\"10.3390/lubricants12020045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White Etching Cracks (WEC) have become a subject of extensive research in material science, chemistry and lubrication, and even operational mathematics by AI learning. Initially reported in the 1960s and considered an exotic anomaly, the failures gained importance with the global rise of wind energy power and the automotive industry. Unexpectedly high failure rates in various bearing applications have led to the need for a deeper understanding and prevention of WEC. It has come a long way from materials inspection, to parametrically studying WECs on test rigs, to the understanding that WEC is a stand-alone phenomenon and sparingly related to common failures in bearing technology. It has been commonly accepted that WEC drivers have multiple dimensions, e.g., material, contact mechanics, chemistry, and electricity. The impact of these factors on WEC failures is frequently studied using test rigs at the component level, such as the FE8 test rig. The FE8 has been utilized in numerous investigations due to its ability to replicate WEC failures without requiring artificial electricity or hydrogen charging by using specific lubricant chemistry and operating conditions. However, through intensive testing, it was observed in this study that a standard material in an FE8 rig component demonstrated a profound influence on WEC formation. This paper presents the details of the testing and analysis, aiming to investigate the mechanisms of interactions between the hose material and the low reference lubricant. The results demonstrate that the chemistry of the component material plays an important role in WEC formation. This finding may have significant impact in WEC studies, especially when the FE8 rig is used.\",\"PeriodicalId\":502914,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"2010 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12020045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12020045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

白色蚀刻裂纹(WEC)已成为材料科学、化学和润滑,甚至人工智能运算数学领域广泛研究的课题。白蚀刻裂纹最初出现在 20 世纪 60 年代,被认为是一种罕见的异常现象,但随着风能发电和汽车工业在全球的兴起,白蚀刻裂纹变得越来越重要。各种轴承应用中出乎意料的高故障率促使人们需要更深入地了解和预防 WEC。从材料检测,到在试验台架上对 WEC 进行参数研究,再到认识到 WEC 是一种独立现象,与轴承技术中的常见故障关系不大,这一切都经历了漫长的过程。人们普遍认为 WEC 驱动因素涉及多个方面,如材料、接触力学、化学和电学。研究这些因素对 WEC 故障的影响时,经常使用组件级测试平台,如 FE8 测试平台。由于 FE8 能够通过使用特定的润滑剂化学成分和操作条件,在不需要人工供电或充氢的情况下复制 WEC 故障,因此在许多研究中都得到了应用。然而,通过强化测试,本研究发现 FE8 试验台组件中的一种标准材料对 WEC 的形成具有深远影响。本文介绍了测试和分析的细节,旨在研究软管材料与低参考润滑油之间的相互作用机制。结果表明,组件材料的化学性质对 WEC 的形成起着重要作用。这一发现可能会对 WEC 研究产生重大影响,尤其是在使用 FE8 钻机时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Influence of Peripheral Components in Test Rig Creation of White Etching Cracks
White Etching Cracks (WEC) have become a subject of extensive research in material science, chemistry and lubrication, and even operational mathematics by AI learning. Initially reported in the 1960s and considered an exotic anomaly, the failures gained importance with the global rise of wind energy power and the automotive industry. Unexpectedly high failure rates in various bearing applications have led to the need for a deeper understanding and prevention of WEC. It has come a long way from materials inspection, to parametrically studying WECs on test rigs, to the understanding that WEC is a stand-alone phenomenon and sparingly related to common failures in bearing technology. It has been commonly accepted that WEC drivers have multiple dimensions, e.g., material, contact mechanics, chemistry, and electricity. The impact of these factors on WEC failures is frequently studied using test rigs at the component level, such as the FE8 test rig. The FE8 has been utilized in numerous investigations due to its ability to replicate WEC failures without requiring artificial electricity or hydrogen charging by using specific lubricant chemistry and operating conditions. However, through intensive testing, it was observed in this study that a standard material in an FE8 rig component demonstrated a profound influence on WEC formation. This paper presents the details of the testing and analysis, aiming to investigate the mechanisms of interactions between the hose material and the low reference lubricant. The results demonstrate that the chemistry of the component material plays an important role in WEC formation. This finding may have significant impact in WEC studies, especially when the FE8 rig is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Electroplastic-Assisted Grinding on Surface Quality of Ductile Iron Friction and Wear Mechanisms of Ti3SiC2/Cu Composites under the Synergistic Effect of Velocity–Load Field at 800 °C Tribological Properties of PEEK and Its Composite Material under Oil Lubrication Oxidation and Flammability Tests for Grape (Vitis vinifera L.) Seed Oil Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1