{"title":"电力变压器冷却散热器配置的技术经济优化","authors":"A. Koca, Oguzkan Senturk, Ömer Akbal, Hakan Özcan","doi":"10.3390/designs8010015","DOIUrl":null,"url":null,"abstract":"In this research, a numerical approach is created to assess the effective parameters of power transformer thermal management and, as a result, improve their cooling systems. This study analyzes the radiator’s thermal performance across several arrangements and optimizes the dimensions and configurations for varied cooling loads from a techno-economic perspective. The optimization criteria were the radiator’s height (L), fin spacing (D), and number of fins (N). Due to the great complexity of the generated models, the coupled thermo-hydraulic numerical simulations were carried out on a computer cluster. An in-house radiator test facility was constructed for the experiments in order to verify the numerical model. The simulation findings accord well with the empirically obtained values. A total of 76 radiator sets were investigated. Following that, the generated findings were used to perform an optimization analysis. Finally, the response surface method was used to establish an ideal radiator layout for the specified cooling capacity at the lowest possible cost. These findings reveal that the best cooling performance is obtained when the spacing between the fins is 50 mm. Cooling capacity per unit cost rises as radiator size decreases. The cost factor and geometric details were shown to have strong connections.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"13 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno-Economic Optimization of Radiator Configurations in Power Transformer Cooling\",\"authors\":\"A. Koca, Oguzkan Senturk, Ömer Akbal, Hakan Özcan\",\"doi\":\"10.3390/designs8010015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a numerical approach is created to assess the effective parameters of power transformer thermal management and, as a result, improve their cooling systems. This study analyzes the radiator’s thermal performance across several arrangements and optimizes the dimensions and configurations for varied cooling loads from a techno-economic perspective. The optimization criteria were the radiator’s height (L), fin spacing (D), and number of fins (N). Due to the great complexity of the generated models, the coupled thermo-hydraulic numerical simulations were carried out on a computer cluster. An in-house radiator test facility was constructed for the experiments in order to verify the numerical model. The simulation findings accord well with the empirically obtained values. A total of 76 radiator sets were investigated. Following that, the generated findings were used to perform an optimization analysis. Finally, the response surface method was used to establish an ideal radiator layout for the specified cooling capacity at the lowest possible cost. These findings reveal that the best cooling performance is obtained when the spacing between the fins is 50 mm. Cooling capacity per unit cost rises as radiator size decreases. The cost factor and geometric details were shown to have strong connections.\",\"PeriodicalId\":504821,\"journal\":{\"name\":\"Designs\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/designs8010015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs8010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Techno-Economic Optimization of Radiator Configurations in Power Transformer Cooling
In this research, a numerical approach is created to assess the effective parameters of power transformer thermal management and, as a result, improve their cooling systems. This study analyzes the radiator’s thermal performance across several arrangements and optimizes the dimensions and configurations for varied cooling loads from a techno-economic perspective. The optimization criteria were the radiator’s height (L), fin spacing (D), and number of fins (N). Due to the great complexity of the generated models, the coupled thermo-hydraulic numerical simulations were carried out on a computer cluster. An in-house radiator test facility was constructed for the experiments in order to verify the numerical model. The simulation findings accord well with the empirically obtained values. A total of 76 radiator sets were investigated. Following that, the generated findings were used to perform an optimization analysis. Finally, the response surface method was used to establish an ideal radiator layout for the specified cooling capacity at the lowest possible cost. These findings reveal that the best cooling performance is obtained when the spacing between the fins is 50 mm. Cooling capacity per unit cost rises as radiator size decreases. The cost factor and geometric details were shown to have strong connections.