设计和比较用于辐射环境应用的耐 SEU 10T 存储单元

Q3 Engineering EAI Endorsed Transactions on Energy Web Pub Date : 2024-02-01 DOI:10.4108/ew.5006
P. Mangayarkarasi, Arunkumar K, Anitha Juliette Albert
{"title":"设计和比较用于辐射环境应用的耐 SEU 10T 存储单元","authors":"P. Mangayarkarasi, Arunkumar K, Anitha Juliette Albert","doi":"10.4108/ew.5006","DOIUrl":null,"url":null,"abstract":"Single event upsets (SEUs), which are caused by radiation particles, have emerged as a significant concern in aircraft applications. Soft mistakes, which manifest as corruption of data in memory chips and circuit faults, are mostly produced by SEUs. The utilization of SEUs can have both advantageous and detrimental effects in some critical memory applications. Nevertheless, in adherence to design principles, Radiation-Hardening-By-Design (RHBD) methodologies have been employed to mitigate the impact of soft mistakes in memory. This study presents a novel memory cell design, referred to as a Robust 10T memory cell, which aims to improve dependability in the context of aerospace radiation environments. The proposed design has several advantages, including reduced area, low power consumption, good stability, and a decreased number of transistors. Simulations were conducted using the TSMC 65nm CMO technology, employing the Tanner tool. The parameters of the RHB 10T cell were measured and afterwards compared to those of the 12T memory cell. The findings obtained from the simulation demonstrate that the performance of the 10T memory cell surpasses that of the 12T memory cell.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Comparison of SEU Tolerant 10T Memory Cell for Radiation Environment Applications\",\"authors\":\"P. Mangayarkarasi, Arunkumar K, Anitha Juliette Albert\",\"doi\":\"10.4108/ew.5006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single event upsets (SEUs), which are caused by radiation particles, have emerged as a significant concern in aircraft applications. Soft mistakes, which manifest as corruption of data in memory chips and circuit faults, are mostly produced by SEUs. The utilization of SEUs can have both advantageous and detrimental effects in some critical memory applications. Nevertheless, in adherence to design principles, Radiation-Hardening-By-Design (RHBD) methodologies have been employed to mitigate the impact of soft mistakes in memory. This study presents a novel memory cell design, referred to as a Robust 10T memory cell, which aims to improve dependability in the context of aerospace radiation environments. The proposed design has several advantages, including reduced area, low power consumption, good stability, and a decreased number of transistors. Simulations were conducted using the TSMC 65nm CMO technology, employing the Tanner tool. The parameters of the RHB 10T cell were measured and afterwards compared to those of the 12T memory cell. The findings obtained from the simulation demonstrate that the performance of the 10T memory cell surpasses that of the 12T memory cell.\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.5006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

由辐射粒子引起的单次事件中断(SEUs)已成为飞机应用中的一个重大问题。软错误主要由 SEUs 引起,表现为内存芯片中的数据损坏和电路故障。在一些关键的存储器应用中,使用 SEU 既有好处,也有坏处。尽管如此,为了遵循设计原则,人们还是采用了辐射硬化设计(RHBD)方法来减轻存储器中软错误的影响。本研究提出了一种新型存储单元设计,称为 "鲁棒 10T 存储单元",旨在提高在航空航天辐射环境下的可靠性。所提出的设计具有多个优点,包括面积小、功耗低、稳定性好和晶体管数量减少。仿真采用了台积电 65nm CMO 技术,并使用了 Tanner 工具。测量了 RHB 10T 单元的参数,然后与 12T 存储单元的参数进行了比较。仿真结果表明,10T 存储单元的性能超过了 12T 存储单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Comparison of SEU Tolerant 10T Memory Cell for Radiation Environment Applications
Single event upsets (SEUs), which are caused by radiation particles, have emerged as a significant concern in aircraft applications. Soft mistakes, which manifest as corruption of data in memory chips and circuit faults, are mostly produced by SEUs. The utilization of SEUs can have both advantageous and detrimental effects in some critical memory applications. Nevertheless, in adherence to design principles, Radiation-Hardening-By-Design (RHBD) methodologies have been employed to mitigate the impact of soft mistakes in memory. This study presents a novel memory cell design, referred to as a Robust 10T memory cell, which aims to improve dependability in the context of aerospace radiation environments. The proposed design has several advantages, including reduced area, low power consumption, good stability, and a decreased number of transistors. Simulations were conducted using the TSMC 65nm CMO technology, employing the Tanner tool. The parameters of the RHB 10T cell were measured and afterwards compared to those of the 12T memory cell. The findings obtained from the simulation demonstrate that the performance of the 10T memory cell surpasses that of the 12T memory cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EAI Endorsed Transactions on Energy Web
EAI Endorsed Transactions on Energy Web Energy-Energy Engineering and Power Technology
CiteScore
2.60
自引率
0.00%
发文量
14
审稿时长
10 weeks
期刊介绍: With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.
期刊最新文献
Energy-Efficient Design of Seabed Substrate Detection Model Leveraging CNN-SVM Architecture and Sonar Data Enhancing Efficiency and Energy Optimization: Data-Driven Solutions in Process Industrial Manufacturing Legal Framework of Land Engineering: Compliance with Environmental Regulations to Reduce Pollution Life Cycle Assessment and Model Optimization for Sustainable Energy Cross-Border E-Commerce Research on the Technical and Economic Development of Large Megawatt Wind Turbines Based on Medium-Voltage Electrical System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1