Nazir Jan, N. Minallah, Neelam Gohar, Naveed Jan, Shahid Khan, Salahuddin Khan, Mohammad Alibakhshikenari
{"title":"通过哨兵-2 可见光和短波红外波段绘制花岗岩暴露图","authors":"Nazir Jan, N. Minallah, Neelam Gohar, Naveed Jan, Shahid Khan, Salahuddin Khan, Mohammad Alibakhshikenari","doi":"10.1029/2023rs007864","DOIUrl":null,"url":null,"abstract":"Nonmetallic minerals like granite and limestone have calcite and biotitic ingredients as their major part which exhibit wonderful absorption features in the visible and short wave range of the electromagnetic spectrum. This research puts emphasis on delineating granite and limestone deposits of the Mardan district through the latest multispectral Landsat‐9 and Sentinel‐2 sensors of which the latter provided 94% mapping accuracy in delineating granites (biotitic bearing minerals) and limestone (calcite‐bearing minerals). The Image processing techniques of minimum noise fraction, which is double cascaded principal components analysis and pixel purity index algorithms proved helpful to bring significant improvements in classification results and in the reduction of noise and data size. The outcomes of the research study show that supervised machine learning algorithms are impactful to map such minerals provided that the data must be well organized and limited in size. The results achieved were verified through validation steps like, (a) Independent reference data of high‐resolution Google Earth maps and (b) Ground survey reports. Arc GIS 10.2 and Envi 5.3 software suite were used to create (a) ground truth points at random for accuracy assessment (b) portraying study area maps (c) Image Processing and Preprocessing tools and (d) implementation of machine learning algorithms. Access to the data and software suite is being provided for open research work.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"40 13","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granite Exposure Mapping Through Sentinel‐2 Visible and Short Wave Infrared Bands\",\"authors\":\"Nazir Jan, N. Minallah, Neelam Gohar, Naveed Jan, Shahid Khan, Salahuddin Khan, Mohammad Alibakhshikenari\",\"doi\":\"10.1029/2023rs007864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonmetallic minerals like granite and limestone have calcite and biotitic ingredients as their major part which exhibit wonderful absorption features in the visible and short wave range of the electromagnetic spectrum. This research puts emphasis on delineating granite and limestone deposits of the Mardan district through the latest multispectral Landsat‐9 and Sentinel‐2 sensors of which the latter provided 94% mapping accuracy in delineating granites (biotitic bearing minerals) and limestone (calcite‐bearing minerals). The Image processing techniques of minimum noise fraction, which is double cascaded principal components analysis and pixel purity index algorithms proved helpful to bring significant improvements in classification results and in the reduction of noise and data size. The outcomes of the research study show that supervised machine learning algorithms are impactful to map such minerals provided that the data must be well organized and limited in size. The results achieved were verified through validation steps like, (a) Independent reference data of high‐resolution Google Earth maps and (b) Ground survey reports. Arc GIS 10.2 and Envi 5.3 software suite were used to create (a) ground truth points at random for accuracy assessment (b) portraying study area maps (c) Image Processing and Preprocessing tools and (d) implementation of machine learning algorithms. Access to the data and software suite is being provided for open research work.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"40 13\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1029/2023rs007864\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1029/2023rs007864","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Granite Exposure Mapping Through Sentinel‐2 Visible and Short Wave Infrared Bands
Nonmetallic minerals like granite and limestone have calcite and biotitic ingredients as their major part which exhibit wonderful absorption features in the visible and short wave range of the electromagnetic spectrum. This research puts emphasis on delineating granite and limestone deposits of the Mardan district through the latest multispectral Landsat‐9 and Sentinel‐2 sensors of which the latter provided 94% mapping accuracy in delineating granites (biotitic bearing minerals) and limestone (calcite‐bearing minerals). The Image processing techniques of minimum noise fraction, which is double cascaded principal components analysis and pixel purity index algorithms proved helpful to bring significant improvements in classification results and in the reduction of noise and data size. The outcomes of the research study show that supervised machine learning algorithms are impactful to map such minerals provided that the data must be well organized and limited in size. The results achieved were verified through validation steps like, (a) Independent reference data of high‐resolution Google Earth maps and (b) Ground survey reports. Arc GIS 10.2 and Envi 5.3 software suite were used to create (a) ground truth points at random for accuracy assessment (b) portraying study area maps (c) Image Processing and Preprocessing tools and (d) implementation of machine learning algorithms. Access to the data and software suite is being provided for open research work.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.