基于多重优化匹配的串联电池组分层能量均衡结构

Jianfang Jiao , Hongwei Wang , Feng Gao , Serdar Coskun , Guang Wang , Jiale Xie , Fei Feng
{"title":"基于多重优化匹配的串联电池组分层能量均衡结构","authors":"Jianfang Jiao ,&nbsp;Hongwei Wang ,&nbsp;Feng Gao ,&nbsp;Serdar Coskun ,&nbsp;Guang Wang ,&nbsp;Jiale Xie ,&nbsp;Fei Feng","doi":"10.1016/j.geits.2024.100182","DOIUrl":null,"url":null,"abstract":"<div><div>The equalization management system is an essential guarantee for the safe, stable, and efficient operation of the power battery pack, mainly composed of the topology of the equalization circuit and the corresponding control strategy. This article proposes a novel active balancing control strategy to address the issue of individual cell energy imbalance in battery packs. Firstly, to achieve energy equalization under complex conditions, a two-layer equalization circuit topology is designed, and the efficiency and loss of energy transfer in the equalization process are studied. Furthermore, a directed graph-based approach was proposed to represent the circuit topology equivalently as a multi-weighted network. Combined with a multi-weighted optimal matching algorithm, aims to determine the optimal energy transfer path and reduce equalization losses. In addition, a fuzzy controller that can dynamically adjust the equalization current with the state parameter of the cell as the input condition is designed to optimize the equalization efficiency. Matlab/Simulink software is used to build and simulate the model. The experimental results indicate that, under the same static state, the newly proposed control strategy improves efficiency by 6.08% and enhances equalization speed by 42.03% compared to the maximum value equalization method. The method also effectively improves energy utilization under the same charging and discharging states.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 2","pages":"Article 100182"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered energy equalization structure for series battery pack based on multiple optimal matching\",\"authors\":\"Jianfang Jiao ,&nbsp;Hongwei Wang ,&nbsp;Feng Gao ,&nbsp;Serdar Coskun ,&nbsp;Guang Wang ,&nbsp;Jiale Xie ,&nbsp;Fei Feng\",\"doi\":\"10.1016/j.geits.2024.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The equalization management system is an essential guarantee for the safe, stable, and efficient operation of the power battery pack, mainly composed of the topology of the equalization circuit and the corresponding control strategy. This article proposes a novel active balancing control strategy to address the issue of individual cell energy imbalance in battery packs. Firstly, to achieve energy equalization under complex conditions, a two-layer equalization circuit topology is designed, and the efficiency and loss of energy transfer in the equalization process are studied. Furthermore, a directed graph-based approach was proposed to represent the circuit topology equivalently as a multi-weighted network. Combined with a multi-weighted optimal matching algorithm, aims to determine the optimal energy transfer path and reduce equalization losses. In addition, a fuzzy controller that can dynamically adjust the equalization current with the state parameter of the cell as the input condition is designed to optimize the equalization efficiency. Matlab/Simulink software is used to build and simulate the model. The experimental results indicate that, under the same static state, the newly proposed control strategy improves efficiency by 6.08% and enhances equalization speed by 42.03% compared to the maximum value equalization method. The method also effectively improves energy utilization under the same charging and discharging states.</div></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"4 2\",\"pages\":\"Article 100182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layered energy equalization structure for series battery pack based on multiple optimal matching
The equalization management system is an essential guarantee for the safe, stable, and efficient operation of the power battery pack, mainly composed of the topology of the equalization circuit and the corresponding control strategy. This article proposes a novel active balancing control strategy to address the issue of individual cell energy imbalance in battery packs. Firstly, to achieve energy equalization under complex conditions, a two-layer equalization circuit topology is designed, and the efficiency and loss of energy transfer in the equalization process are studied. Furthermore, a directed graph-based approach was proposed to represent the circuit topology equivalently as a multi-weighted network. Combined with a multi-weighted optimal matching algorithm, aims to determine the optimal energy transfer path and reduce equalization losses. In addition, a fuzzy controller that can dynamically adjust the equalization current with the state parameter of the cell as the input condition is designed to optimize the equalization efficiency. Matlab/Simulink software is used to build and simulate the model. The experimental results indicate that, under the same static state, the newly proposed control strategy improves efficiency by 6.08% and enhances equalization speed by 42.03% compared to the maximum value equalization method. The method also effectively improves energy utilization under the same charging and discharging states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
Intelligent lithium plating detection and prediction method for Li-ion batteries based on random forest model Mixed ion-electron conducting LixAg alloy anode enabling stable Li plating/stripping in solid-state batteries via enhanced Li diffusion kinetic Radial distribution systems performance enhancement through RE (Renewable Energy) integration and comprehensive contingency ranking analysis State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory Unraveling mechanisms of electrolyte wetting process in three-dimensional electrode structures: Insights from realistic architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1