{"title":"大型语言模型基础设施管理说明","authors":"Lara Dal Molin","doi":"10.5210/fm.v29i2.13567","DOIUrl":null,"url":null,"abstract":"This paper draws on information infrastructures (IIs) in science and technology studies (STS), as well as on feminist STS scholarship and contemporary critical accounts of digital technologies, to build an initial mapping of the infrastructural mechanisms and implications of large language models (LLMs). Through a comparison with discriminatory machine learning (ML) systems and a case study on gender bias, I present LLMs as contested artefacts with categorising and performative capabilities. This paper suggests that generative systems do not tangibly depart from traditional, discriminative counterparts in terms of their underlying probabilistic mechanisms, and therefore both technologies can be theorised as infrastructures of categorisation. However, LLMs additionally retain performative capabilities through their linguistic outputs. Here, I outline the intuition behind this phenomenon, which I refer to as “language as infrastructure”. While traditional, discriminative systems “disappear” into larger IIs, the hype surrounding generative technologies presents an opportunity to scrutinise these artefacts, to alter their computational mechanisms and introduce governance measures]. I illustrate this thesis through Sharma’s formulation of “broken machine”, and suggest dataset curation and participatory design as governance mechanisms that can partly address downstream harms in LLMs (Barocas, et al., 2023).","PeriodicalId":38833,"journal":{"name":"First Monday","volume":"36 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes towards infrastructure governance for large language models\",\"authors\":\"Lara Dal Molin\",\"doi\":\"10.5210/fm.v29i2.13567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper draws on information infrastructures (IIs) in science and technology studies (STS), as well as on feminist STS scholarship and contemporary critical accounts of digital technologies, to build an initial mapping of the infrastructural mechanisms and implications of large language models (LLMs). Through a comparison with discriminatory machine learning (ML) systems and a case study on gender bias, I present LLMs as contested artefacts with categorising and performative capabilities. This paper suggests that generative systems do not tangibly depart from traditional, discriminative counterparts in terms of their underlying probabilistic mechanisms, and therefore both technologies can be theorised as infrastructures of categorisation. However, LLMs additionally retain performative capabilities through their linguistic outputs. Here, I outline the intuition behind this phenomenon, which I refer to as “language as infrastructure”. While traditional, discriminative systems “disappear” into larger IIs, the hype surrounding generative technologies presents an opportunity to scrutinise these artefacts, to alter their computational mechanisms and introduce governance measures]. I illustrate this thesis through Sharma’s formulation of “broken machine”, and suggest dataset curation and participatory design as governance mechanisms that can partly address downstream harms in LLMs (Barocas, et al., 2023).\",\"PeriodicalId\":38833,\"journal\":{\"name\":\"First Monday\",\"volume\":\"36 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Monday\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5210/fm.v29i2.13567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Monday","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5210/fm.v29i2.13567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Notes towards infrastructure governance for large language models
This paper draws on information infrastructures (IIs) in science and technology studies (STS), as well as on feminist STS scholarship and contemporary critical accounts of digital technologies, to build an initial mapping of the infrastructural mechanisms and implications of large language models (LLMs). Through a comparison with discriminatory machine learning (ML) systems and a case study on gender bias, I present LLMs as contested artefacts with categorising and performative capabilities. This paper suggests that generative systems do not tangibly depart from traditional, discriminative counterparts in terms of their underlying probabilistic mechanisms, and therefore both technologies can be theorised as infrastructures of categorisation. However, LLMs additionally retain performative capabilities through their linguistic outputs. Here, I outline the intuition behind this phenomenon, which I refer to as “language as infrastructure”. While traditional, discriminative systems “disappear” into larger IIs, the hype surrounding generative technologies presents an opportunity to scrutinise these artefacts, to alter their computational mechanisms and introduce governance measures]. I illustrate this thesis through Sharma’s formulation of “broken machine”, and suggest dataset curation and participatory design as governance mechanisms that can partly address downstream harms in LLMs (Barocas, et al., 2023).
First MondayComputer Science-Computer Networks and Communications
CiteScore
2.20
自引率
0.00%
发文量
86
期刊介绍:
First Monday is one of the first openly accessible, peer–reviewed journals on the Internet, solely devoted to the Internet. Since its start in May 1996, First Monday has published 1,035 papers in 164 issues; these papers were written by 1,316 different authors. In addition, eight special issues have appeared. The most recent special issue was entitled A Web site with a view — The Third World on First Monday and it was edited by Eduardo Villanueva Mansilla. First Monday is indexed in Communication Abstracts, Computer & Communications Security Abstracts, DoIS, eGranary Digital Library, INSPEC, Information Science & Technology Abstracts, LISA, PAIS, and other services.