带径向阻尼间隙的磁流变阻尼器的设计、理论建模和实验分析

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2024-02-06 DOI:10.1177/1045389x231218336
Jian Yan, Longlei Dong
{"title":"带径向阻尼间隙的磁流变阻尼器的设计、理论建模和实验分析","authors":"Jian Yan, Longlei Dong","doi":"10.1177/1045389x231218336","DOIUrl":null,"url":null,"abstract":"In order to describe and predict the damping force of the magnetorheological damper with radial damping gap, a more accurate damping force calculation model is proposed through theoretical modeling. Firstly, according to the working environment of the heavy vehicle, a magnetorheological damper with radial damping gap is designed in a limited installation space, which has the characteristics of large damping force and tensile damping force greater than compression damping force. Secondly, based on the Bingham model for theoretical modeling, the analytical solution of the pressure drop gradient of the radial damping gap is obtained, and then a theoretical model that can more effectively reflect the mechanical characteristics of the radial damping gap is proposed. The dynamic characteristics of the designed magnetorheological damper are tested, and the experimental results verify that the designed structure has a good magnetorheological effect. When the current is 3 A, the maximum damping force of the damper exceeds 16 kN. Finally, by comparing the simulation results of the theoretical model with the experimental results, the results show that the established mathematical model can describe the experimental results well. The accuracy of the theoretical model is verified by comparing the proposed model with two commonly used models.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, theoretical modeling, and experimental analysis of a magnetorheological damper with radial damping gap\",\"authors\":\"Jian Yan, Longlei Dong\",\"doi\":\"10.1177/1045389x231218336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to describe and predict the damping force of the magnetorheological damper with radial damping gap, a more accurate damping force calculation model is proposed through theoretical modeling. Firstly, according to the working environment of the heavy vehicle, a magnetorheological damper with radial damping gap is designed in a limited installation space, which has the characteristics of large damping force and tensile damping force greater than compression damping force. Secondly, based on the Bingham model for theoretical modeling, the analytical solution of the pressure drop gradient of the radial damping gap is obtained, and then a theoretical model that can more effectively reflect the mechanical characteristics of the radial damping gap is proposed. The dynamic characteristics of the designed magnetorheological damper are tested, and the experimental results verify that the designed structure has a good magnetorheological effect. When the current is 3 A, the maximum damping force of the damper exceeds 16 kN. Finally, by comparing the simulation results of the theoretical model with the experimental results, the results show that the established mathematical model can describe the experimental results well. The accuracy of the theoretical model is verified by comparing the proposed model with two commonly used models.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x231218336\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231218336","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了描述和预测带径向阻尼间隙磁流变阻尼器的阻尼力,通过理论建模,提出了一种较为精确的阻尼力计算模型。首先,根据重型车辆的工作环境,在有限的安装空间内设计出具有径向阻尼间隙的磁流变阻尼器,该阻尼器具有阻尼力大、拉伸阻尼力大于压缩阻尼力的特点。其次,基于宾厄姆模型进行理论建模,得到了径向阻尼间隙压降梯度的解析解,进而提出了更能有效反映径向阻尼间隙力学特性的理论模型。对所设计的磁流变阻尼器的动态特性进行了测试,实验结果验证了所设计的结构具有良好的磁流变效果。当电流为 3 A 时,阻尼器的最大阻尼力超过 16 kN。最后,通过比较理论模型的模拟结果和实验结果,结果表明所建立的数学模型能很好地描述实验结果。通过将所提出的模型与两个常用模型进行比较,验证了理论模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, theoretical modeling, and experimental analysis of a magnetorheological damper with radial damping gap
In order to describe and predict the damping force of the magnetorheological damper with radial damping gap, a more accurate damping force calculation model is proposed through theoretical modeling. Firstly, according to the working environment of the heavy vehicle, a magnetorheological damper with radial damping gap is designed in a limited installation space, which has the characteristics of large damping force and tensile damping force greater than compression damping force. Secondly, based on the Bingham model for theoretical modeling, the analytical solution of the pressure drop gradient of the radial damping gap is obtained, and then a theoretical model that can more effectively reflect the mechanical characteristics of the radial damping gap is proposed. The dynamic characteristics of the designed magnetorheological damper are tested, and the experimental results verify that the designed structure has a good magnetorheological effect. When the current is 3 A, the maximum damping force of the damper exceeds 16 kN. Finally, by comparing the simulation results of the theoretical model with the experimental results, the results show that the established mathematical model can describe the experimental results well. The accuracy of the theoretical model is verified by comparing the proposed model with two commonly used models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1