Yi Zhao, Xin Jin, Song Gao, Liwen Wu, Shaowen Yao, Qian Jiang
{"title":"利用长距离噪声特征和多级频率感知线索进行人脸伪造检测","authors":"Yi Zhao, Xin Jin, Song Gao, Liwen Wu, Shaowen Yao, Qian Jiang","doi":"10.1049/2024/6523854","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The widespread dissemination of high-fidelity fake faces created by face forgery techniques has caused serious trust concerns and ethical issues in modern society. Consequently, face forgery detection has emerged as a prominent topic of research to prevent technology abuse. Although, most existing face forgery detectors demonstrate success when evaluating high-quality faces under intra-dataset scenarios, they often overfit manipulation-specific artifacts and lack robustness to postprocessing operations. In this work, we design an innovative dual-branch collaboration framework that leverages the strengths of the transformer and CNN to thoroughly dig into the multimodal forgery artifacts from both a global and local perspective. Specifically, a novel adaptive noise trace enhancement module (ANTEM) is proposed to remove high-level face content while amplifying more generalized forgery artifacts in the noise domain. Then, the transformer-based branch can track long-range noise features. Meanwhile, considering that subtle forgery artifacts could be described in the frequency domain even in a compression scenario, a multilevel frequency-aware module (MFAM) is developed and further applied to the CNN-based branch to extract complementary frequency-aware clues. Besides, we incorporate a collaboration strategy involving cross-entropy loss and single center loss to enhance the learning of more generalized representations by optimizing the fusion features of the dual branch. Extensive experiments on various benchmark datasets substantiate the superior generalization and robustness of our framework when compared to the competing approaches.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6523854","citationCount":"0","resultStr":"{\"title\":\"Face Forgery Detection with Long-Range Noise Features and Multilevel Frequency-Aware Clues\",\"authors\":\"Yi Zhao, Xin Jin, Song Gao, Liwen Wu, Shaowen Yao, Qian Jiang\",\"doi\":\"10.1049/2024/6523854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The widespread dissemination of high-fidelity fake faces created by face forgery techniques has caused serious trust concerns and ethical issues in modern society. Consequently, face forgery detection has emerged as a prominent topic of research to prevent technology abuse. Although, most existing face forgery detectors demonstrate success when evaluating high-quality faces under intra-dataset scenarios, they often overfit manipulation-specific artifacts and lack robustness to postprocessing operations. In this work, we design an innovative dual-branch collaboration framework that leverages the strengths of the transformer and CNN to thoroughly dig into the multimodal forgery artifacts from both a global and local perspective. Specifically, a novel adaptive noise trace enhancement module (ANTEM) is proposed to remove high-level face content while amplifying more generalized forgery artifacts in the noise domain. Then, the transformer-based branch can track long-range noise features. Meanwhile, considering that subtle forgery artifacts could be described in the frequency domain even in a compression scenario, a multilevel frequency-aware module (MFAM) is developed and further applied to the CNN-based branch to extract complementary frequency-aware clues. Besides, we incorporate a collaboration strategy involving cross-entropy loss and single center loss to enhance the learning of more generalized representations by optimizing the fusion features of the dual branch. Extensive experiments on various benchmark datasets substantiate the superior generalization and robustness of our framework when compared to the competing approaches.</p>\\n </div>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6523854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6523854\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6523854","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Face Forgery Detection with Long-Range Noise Features and Multilevel Frequency-Aware Clues
The widespread dissemination of high-fidelity fake faces created by face forgery techniques has caused serious trust concerns and ethical issues in modern society. Consequently, face forgery detection has emerged as a prominent topic of research to prevent technology abuse. Although, most existing face forgery detectors demonstrate success when evaluating high-quality faces under intra-dataset scenarios, they often overfit manipulation-specific artifacts and lack robustness to postprocessing operations. In this work, we design an innovative dual-branch collaboration framework that leverages the strengths of the transformer and CNN to thoroughly dig into the multimodal forgery artifacts from both a global and local perspective. Specifically, a novel adaptive noise trace enhancement module (ANTEM) is proposed to remove high-level face content while amplifying more generalized forgery artifacts in the noise domain. Then, the transformer-based branch can track long-range noise features. Meanwhile, considering that subtle forgery artifacts could be described in the frequency domain even in a compression scenario, a multilevel frequency-aware module (MFAM) is developed and further applied to the CNN-based branch to extract complementary frequency-aware clues. Besides, we incorporate a collaboration strategy involving cross-entropy loss and single center loss to enhance the learning of more generalized representations by optimizing the fusion features of the dual branch. Extensive experiments on various benchmark datasets substantiate the superior generalization and robustness of our framework when compared to the competing approaches.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues