定制凝固微结构,在轻质产品中创新使用高密度材料

A.A. Bogno , J. Valloton , M. Rappaz , A. Qureshi , H. Henein
{"title":"定制凝固微结构,在轻质产品中创新使用高密度材料","authors":"A.A. Bogno ,&nbsp;J. Valloton ,&nbsp;M. Rappaz ,&nbsp;A. Qureshi ,&nbsp;H. Henein","doi":"10.1016/j.jalmes.2024.100061","DOIUrl":null,"url":null,"abstract":"<div><p>As more industries move to capitalize on the technological benefits of additive manufacturing, researchers are exploring ways to design new alloys with properties that cannot be achieved through traditional manufacturing methods. One approach is to tailor the solidification microstructures of lightweight components using dense materials. This study examines the microstructures and mechanical properties of near eutectic Al-Cu alloys under different thermal histories, covering both high and low solidification rates found in various additive manufacturing techniques. Slow cooled lattice structures of diamond type unit cell were produced at a relatively low cooling rate by a hybrid investment casting process involving 3D printing of the lattice patterns, and rapid solidified powders of various sizes were generated by Impulse Atomization. Microstructural analysis revealed different eutectic morphologies and spacing depending on the cooling rate and location. The alloys strength was increased by spheroidization of their eutectic phases. The alloys eutectic structures were spheroidized using two spheroidization mechanisms, including (i) Thermo-mechanically by plastic deformation of as solidified samples, followed by heat treatment, and (ii) Chemically by addition of Mg and Si to the near eutectic Al-Cu alloy. Both the thermo-mechanical and the chemical spheroidization mechanism are found to improve the mechanical properties of the alloys. This study demonstrates a potential cost-effective use of heavy alloys in high-performance applications through additive manufacturing (e.g. using lattice structures) by optimizing microstructures and enhancing mechanical properties.</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"5 ","pages":"Article 100061"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949917824000087/pdfft?md5=5d2d4f36d51d9c4fbecc10794c8ef18c&pid=1-s2.0-S2949917824000087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tailored solidification microstructures for innovative use of high-density materials in lightweight products\",\"authors\":\"A.A. Bogno ,&nbsp;J. Valloton ,&nbsp;M. Rappaz ,&nbsp;A. Qureshi ,&nbsp;H. Henein\",\"doi\":\"10.1016/j.jalmes.2024.100061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As more industries move to capitalize on the technological benefits of additive manufacturing, researchers are exploring ways to design new alloys with properties that cannot be achieved through traditional manufacturing methods. One approach is to tailor the solidification microstructures of lightweight components using dense materials. This study examines the microstructures and mechanical properties of near eutectic Al-Cu alloys under different thermal histories, covering both high and low solidification rates found in various additive manufacturing techniques. Slow cooled lattice structures of diamond type unit cell were produced at a relatively low cooling rate by a hybrid investment casting process involving 3D printing of the lattice patterns, and rapid solidified powders of various sizes were generated by Impulse Atomization. Microstructural analysis revealed different eutectic morphologies and spacing depending on the cooling rate and location. The alloys strength was increased by spheroidization of their eutectic phases. The alloys eutectic structures were spheroidized using two spheroidization mechanisms, including (i) Thermo-mechanically by plastic deformation of as solidified samples, followed by heat treatment, and (ii) Chemically by addition of Mg and Si to the near eutectic Al-Cu alloy. Both the thermo-mechanical and the chemical spheroidization mechanism are found to improve the mechanical properties of the alloys. This study demonstrates a potential cost-effective use of heavy alloys in high-performance applications through additive manufacturing (e.g. using lattice structures) by optimizing microstructures and enhancing mechanical properties.</p></div>\",\"PeriodicalId\":100753,\"journal\":{\"name\":\"Journal of Alloys and Metallurgical Systems\",\"volume\":\"5 \",\"pages\":\"Article 100061\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949917824000087/pdfft?md5=5d2d4f36d51d9c4fbecc10794c8ef18c&pid=1-s2.0-S2949917824000087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Metallurgical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949917824000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着越来越多的行业开始利用增材制造的技术优势,研究人员正在探索如何设计出具有传统制造方法无法实现的特性的新型合金。其中一种方法是利用致密材料定制轻质部件的凝固微结构。本研究考察了近共晶铝铜合金在不同热历史条件下的微观结构和机械性能,涵盖了各种增材制造技术中的高凝固速率和低凝固速率。在相对较低的冷却速率下,通过混合熔模铸造工艺(包括晶格图案的三维打印)生产出了金刚石型单胞的慢冷晶格结构,并通过脉冲雾化技术生产出了各种尺寸的快速凝固粉末。微观结构分析表明,不同的冷却速度和位置会产生不同的共晶形态和间距。共晶相的球化提高了合金的强度。合金共晶结构的球化采用了两种球化机制,包括:(i) 通过凝固样品的塑性变形进行热机械球化,然后进行热处理;(ii) 通过向接近共晶的铝铜合金中添加镁和硅进行化学球化。研究发现,热机械和化学球化机制都能改善合金的机械性能。这项研究表明,通过增材制造(例如使用晶格结构)优化微结构和提高机械性能,重合金在高性能应用中具有潜在的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailored solidification microstructures for innovative use of high-density materials in lightweight products

As more industries move to capitalize on the technological benefits of additive manufacturing, researchers are exploring ways to design new alloys with properties that cannot be achieved through traditional manufacturing methods. One approach is to tailor the solidification microstructures of lightweight components using dense materials. This study examines the microstructures and mechanical properties of near eutectic Al-Cu alloys under different thermal histories, covering both high and low solidification rates found in various additive manufacturing techniques. Slow cooled lattice structures of diamond type unit cell were produced at a relatively low cooling rate by a hybrid investment casting process involving 3D printing of the lattice patterns, and rapid solidified powders of various sizes were generated by Impulse Atomization. Microstructural analysis revealed different eutectic morphologies and spacing depending on the cooling rate and location. The alloys strength was increased by spheroidization of their eutectic phases. The alloys eutectic structures were spheroidized using two spheroidization mechanisms, including (i) Thermo-mechanically by plastic deformation of as solidified samples, followed by heat treatment, and (ii) Chemically by addition of Mg and Si to the near eutectic Al-Cu alloy. Both the thermo-mechanical and the chemical spheroidization mechanism are found to improve the mechanical properties of the alloys. This study demonstrates a potential cost-effective use of heavy alloys in high-performance applications through additive manufacturing (e.g. using lattice structures) by optimizing microstructures and enhancing mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Metallurgical assessment of Al-Zr-Y alloys for laser-based processing Insights into magnesium alloy significance Metallurgical and mechanical properties of failed railway screw coupling in screw part Corrosion and wear study of medium entropy Pb-Sn-Cu alloy for coating application Impact of friction stir welding on the mechanical and microstructural properties of austempered ductile iron and mild steel joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1