Angelica Martino, Jiyun Jeon, Hyun-Ho Park, Hochun Lee, Chang-Seop Lee
{"title":"通过表面保护蚀刻技术将泡泡纱状碳包覆的 \"拨浪鼓 \"型二氧化硅@硅纳米粒子用作锂离子电池的混合负极材料","authors":"Angelica Martino, Jiyun Jeon, Hyun-Ho Park, Hochun Lee, Chang-Seop Lee","doi":"10.3390/batteries10020053","DOIUrl":null,"url":null,"abstract":"Severe volumetric expansion (~400%) limits practical application of silicon nanoparticles as anode materials for next-generation lithium-ion batteries (LIBs). Here, we describe the fabrication and characterization of a conformal polydopamine carbon shell encapsulating rattle-type silica@silicon nanoparticles (PDA–PEI@PVP–SiO2@Si) with a tunable void structure using a dual template strategy with TEOS and (3-aminopropyl)triethoxysilane (APTES) pretreated with polyvinylpyrrolidone (PVP K30) as SiO2 sacrificial template via a modified Stöber process. Polyethylene imine (PEI) crosslinking facilitated the construction of an interconnected three-dimensional bubble wrap-like carbon matrix structure through hydrothermal treatment, pyrolysis, and subsequent surface-protected etching. The composite anode material delivered satisfactory capacities of 539 mAh g−1 after 100 cycles at 0.1 A g−1, 512.76 mAh g−1 after 200 cycles at 1 A g−1, and 453 mAh g−1 rate performance at 5 A g−1, respectively. The electrochemical performance of PDA–PEI@PVP–SiO2@Si was attributed to the rattle-type structure providing void space for Si volume expansion, PVP K30-pretreated APTES/TEOS SiO2 seeds via catalyst-free, hydrothermal-assisted Stöber protecting Si/C spheres upon etching, carbon coating strategy increasing Si conductivity while stabilizing the solid electrolyte interface (SEI), and PEI carbon crosslinks providing continuous conductive pathways across the electrode structure. The present work describes a promising strategy to synthesize tunable yolk shell C@void@Si composite anode materials for high power/energy-density LIBs applications.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"49 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble Wrap-like Carbon-Coated Rattle-Type silica@silicon Nanoparticles as Hybrid Anode Materials for Lithium-Ion Batteries via Surface-Protected Etching\",\"authors\":\"Angelica Martino, Jiyun Jeon, Hyun-Ho Park, Hochun Lee, Chang-Seop Lee\",\"doi\":\"10.3390/batteries10020053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe volumetric expansion (~400%) limits practical application of silicon nanoparticles as anode materials for next-generation lithium-ion batteries (LIBs). Here, we describe the fabrication and characterization of a conformal polydopamine carbon shell encapsulating rattle-type silica@silicon nanoparticles (PDA–PEI@PVP–SiO2@Si) with a tunable void structure using a dual template strategy with TEOS and (3-aminopropyl)triethoxysilane (APTES) pretreated with polyvinylpyrrolidone (PVP K30) as SiO2 sacrificial template via a modified Stöber process. Polyethylene imine (PEI) crosslinking facilitated the construction of an interconnected three-dimensional bubble wrap-like carbon matrix structure through hydrothermal treatment, pyrolysis, and subsequent surface-protected etching. The composite anode material delivered satisfactory capacities of 539 mAh g−1 after 100 cycles at 0.1 A g−1, 512.76 mAh g−1 after 200 cycles at 1 A g−1, and 453 mAh g−1 rate performance at 5 A g−1, respectively. The electrochemical performance of PDA–PEI@PVP–SiO2@Si was attributed to the rattle-type structure providing void space for Si volume expansion, PVP K30-pretreated APTES/TEOS SiO2 seeds via catalyst-free, hydrothermal-assisted Stöber protecting Si/C spheres upon etching, carbon coating strategy increasing Si conductivity while stabilizing the solid electrolyte interface (SEI), and PEI carbon crosslinks providing continuous conductive pathways across the electrode structure. The present work describes a promising strategy to synthesize tunable yolk shell C@void@Si composite anode materials for high power/energy-density LIBs applications.\",\"PeriodicalId\":502356,\"journal\":{\"name\":\"Batteries\",\"volume\":\"49 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10020053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10020053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
严重的体积膨胀(约 400%)限制了硅纳米颗粒作为下一代锂离子电池(LIB)负极材料的实际应用。在此,我们介绍了通过改良的斯托伯工艺,以 TEOS 和 (3-aminopropyl)triethoxysilane (APTES) 预处理的聚乙烯吡咯烷酮 (PVP K30) 作为 SiO2 牺牲模板的双模板策略,制备并表征了具有可调空隙结构的保形聚多巴胺碳壳,该碳壳封装了拨浪鼓型二氧化硅@硅纳米粒子(PDA-PEI@PVP-SiO2@Si)。通过水热处理、热解和随后的表面保护蚀刻,聚乙烯亚胺(PEI)交联促进了三维气泡膜状碳基质结构的构建。这种复合阳极材料在 0.1 A g-1 的条件下循环 100 次后的容量为 539 mAh g-1,在 1 A g-1 的条件下循环 200 次后的容量为 512.76 mAh g-1,在 5 A g-1 的条件下的速率性能为 453 mAh g-1。PDA-PEI@PVP-SiO2@Si 的电化学性能归功于为硅体积膨胀提供空隙的拨浪鼓型结构、通过无催化剂的水热辅助斯托伯(Stöber)技术预处理 APTES/TEOS SiO2 种子并在蚀刻时保护 Si/C 球体、在稳定固体电解质界面(SEI)的同时提高硅导电性的碳涂层策略,以及为整个电极结构提供连续导电路径的 PEI 碳交联。本研究介绍了合成可调蛋黄壳 C@void@Si 复合阳极材料的可行策略,可用于高功率/高能量密度的 LIBs 应用。
Bubble Wrap-like Carbon-Coated Rattle-Type silica@silicon Nanoparticles as Hybrid Anode Materials for Lithium-Ion Batteries via Surface-Protected Etching
Severe volumetric expansion (~400%) limits practical application of silicon nanoparticles as anode materials for next-generation lithium-ion batteries (LIBs). Here, we describe the fabrication and characterization of a conformal polydopamine carbon shell encapsulating rattle-type silica@silicon nanoparticles (PDA–PEI@PVP–SiO2@Si) with a tunable void structure using a dual template strategy with TEOS and (3-aminopropyl)triethoxysilane (APTES) pretreated with polyvinylpyrrolidone (PVP K30) as SiO2 sacrificial template via a modified Stöber process. Polyethylene imine (PEI) crosslinking facilitated the construction of an interconnected three-dimensional bubble wrap-like carbon matrix structure through hydrothermal treatment, pyrolysis, and subsequent surface-protected etching. The composite anode material delivered satisfactory capacities of 539 mAh g−1 after 100 cycles at 0.1 A g−1, 512.76 mAh g−1 after 200 cycles at 1 A g−1, and 453 mAh g−1 rate performance at 5 A g−1, respectively. The electrochemical performance of PDA–PEI@PVP–SiO2@Si was attributed to the rattle-type structure providing void space for Si volume expansion, PVP K30-pretreated APTES/TEOS SiO2 seeds via catalyst-free, hydrothermal-assisted Stöber protecting Si/C spheres upon etching, carbon coating strategy increasing Si conductivity while stabilizing the solid electrolyte interface (SEI), and PEI carbon crosslinks providing continuous conductive pathways across the electrode structure. The present work describes a promising strategy to synthesize tunable yolk shell C@void@Si composite anode materials for high power/energy-density LIBs applications.