{"title":"多层二维材料中的新激子","authors":"Luojun Du","doi":"10.1038/s42254-024-00704-5","DOIUrl":null,"url":null,"abstract":"Excitonic effects dominate the optical properties of 2D materials, and excitons have been observed both within a single layer, and between two layers of 2D materials. In 2023, a number of experiments on trilayer 2D structures uncovered new exciton states — quadrupolar and every-other-layer excitons — that have an electrically-tunable dipole moment and show a quantum many-body phase diagram. In 2023, a number of experiments on trilayer 2D structures uncovered new exciton states that have an electrically-tunable dipole moment and show a quantum many-body phase diagram.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":null,"pages":null},"PeriodicalIF":44.8000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New excitons in multilayer 2D materials\",\"authors\":\"Luojun Du\",\"doi\":\"10.1038/s42254-024-00704-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excitonic effects dominate the optical properties of 2D materials, and excitons have been observed both within a single layer, and between two layers of 2D materials. In 2023, a number of experiments on trilayer 2D structures uncovered new exciton states — quadrupolar and every-other-layer excitons — that have an electrically-tunable dipole moment and show a quantum many-body phase diagram. In 2023, a number of experiments on trilayer 2D structures uncovered new exciton states that have an electrically-tunable dipole moment and show a quantum many-body phase diagram.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-024-00704-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00704-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Excitonic effects dominate the optical properties of 2D materials, and excitons have been observed both within a single layer, and between two layers of 2D materials. In 2023, a number of experiments on trilayer 2D structures uncovered new exciton states — quadrupolar and every-other-layer excitons — that have an electrically-tunable dipole moment and show a quantum many-body phase diagram. In 2023, a number of experiments on trilayer 2D structures uncovered new exciton states that have an electrically-tunable dipole moment and show a quantum many-body phase diagram.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.