{"title":"基于 YOLOv8s 的足球裁判手势识别算法","authors":"Zhiyuan Yang, Yuanyuan Shen, Yanfei Shen","doi":"10.3389/fncom.2024.1341234","DOIUrl":null,"url":null,"abstract":"<p>Gesture serves as a crucial means of communication between individuals and between humans and machines. In football matches, referees communicate judgment information through gestures. Due to the diversity and complexity of referees’ gestures and interference factors, such as the players, spectators, and camera angles, automated football referee gesture recognition (FRGR) has become a challenging task. The existing methods based on visual sensors often cannot provide a satisfactory performance. To tackle FRGR problems, we develop a deep learning model based on YOLOv8s. Three improving and optimizing strategies are integrated to solve these problems. First, a Global Attention Mechanism (GAM) is employed to direct the model’s attention to the hand gestures and minimize the background interference. Second, a P2 detection head structure is integrated into the YOLOv8s model to enhance the accuracy of detecting smaller objects at a distance. Third, a new loss function based on the Minimum Point Distance Intersection over Union (MPDIoU) is used to effectively utilize anchor boxes with the same shape, but different sizes. Finally, experiments are executed on a dataset of six hand gestures among 1,200 images. The proposed method was compared with seven different existing models and 10 different optimization models. The proposed method achieves a precision rate of 89.3%, a recall rate of 88.9%, a mAP@0.5 rate of 89.9%, and a mAP@0.5:0.95 rate of 77.3%. These rates are approximately 1.4%, 2.0%, 1.1%, and 5.4% better than those of the newest YOLOv8s, respectively. The proposed method has right prospect in automated gesture recognition for football matches.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Football referee gesture recognition algorithm based on YOLOv8s\",\"authors\":\"Zhiyuan Yang, Yuanyuan Shen, Yanfei Shen\",\"doi\":\"10.3389/fncom.2024.1341234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gesture serves as a crucial means of communication between individuals and between humans and machines. In football matches, referees communicate judgment information through gestures. Due to the diversity and complexity of referees’ gestures and interference factors, such as the players, spectators, and camera angles, automated football referee gesture recognition (FRGR) has become a challenging task. The existing methods based on visual sensors often cannot provide a satisfactory performance. To tackle FRGR problems, we develop a deep learning model based on YOLOv8s. Three improving and optimizing strategies are integrated to solve these problems. First, a Global Attention Mechanism (GAM) is employed to direct the model’s attention to the hand gestures and minimize the background interference. Second, a P2 detection head structure is integrated into the YOLOv8s model to enhance the accuracy of detecting smaller objects at a distance. Third, a new loss function based on the Minimum Point Distance Intersection over Union (MPDIoU) is used to effectively utilize anchor boxes with the same shape, but different sizes. Finally, experiments are executed on a dataset of six hand gestures among 1,200 images. The proposed method was compared with seven different existing models and 10 different optimization models. The proposed method achieves a precision rate of 89.3%, a recall rate of 88.9%, a mAP@0.5 rate of 89.9%, and a mAP@0.5:0.95 rate of 77.3%. These rates are approximately 1.4%, 2.0%, 1.1%, and 5.4% better than those of the newest YOLOv8s, respectively. The proposed method has right prospect in automated gesture recognition for football matches.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1341234\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1341234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Football referee gesture recognition algorithm based on YOLOv8s
Gesture serves as a crucial means of communication between individuals and between humans and machines. In football matches, referees communicate judgment information through gestures. Due to the diversity and complexity of referees’ gestures and interference factors, such as the players, spectators, and camera angles, automated football referee gesture recognition (FRGR) has become a challenging task. The existing methods based on visual sensors often cannot provide a satisfactory performance. To tackle FRGR problems, we develop a deep learning model based on YOLOv8s. Three improving and optimizing strategies are integrated to solve these problems. First, a Global Attention Mechanism (GAM) is employed to direct the model’s attention to the hand gestures and minimize the background interference. Second, a P2 detection head structure is integrated into the YOLOv8s model to enhance the accuracy of detecting smaller objects at a distance. Third, a new loss function based on the Minimum Point Distance Intersection over Union (MPDIoU) is used to effectively utilize anchor boxes with the same shape, but different sizes. Finally, experiments are executed on a dataset of six hand gestures among 1,200 images. The proposed method was compared with seven different existing models and 10 different optimization models. The proposed method achieves a precision rate of 89.3%, a recall rate of 88.9%, a mAP@0.5 rate of 89.9%, and a mAP@0.5:0.95 rate of 77.3%. These rates are approximately 1.4%, 2.0%, 1.1%, and 5.4% better than those of the newest YOLOv8s, respectively. The proposed method has right prospect in automated gesture recognition for football matches.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro