{"title":"USP14 通过促进 SOX2 的去泛素化促进 OSCC 的癌干样细胞特性。","authors":"Chang Liu, Shijie Zhou, Wei Tang","doi":"10.1111/odi.14896","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>USP14 (Ubiquitin-specific-processing protease 14) is a deubiquitinating enzyme with oncogenic effects in oral squamous cell carcinoma (OSCC). This study aims to identify new substrates of USP14 and elucidate their role in modulating cancer stem-like cells (CSCs) in OSCC.</p><p><strong>Materials and methods: </strong>Bioinformatics prediction and docking were performed using UbiBrowser 2.0 and HDOCK, respectively. OSCC cell lines and patient-derived cells were used for experimental validation, employing co-immunoprecipitation, cycloheximide chase assays, and tumor sphere formation to evaluate the effects of USP14 on SOX2 stability, ubiquitination, and CSC phenotypes.</p><p><strong>Results: </strong>USP14 upregulation was associated with worse overall survival and progression-free interval in OSCC. USP14 interacted with SOX2 with its ubiquitin carboxyl-terminal hydrolase domain. USP14 knockdown impaired SOX2 stability by increasing its polyubiquitination. Ectopic overexpression of wild-type USP14, but not the hydrolase-deficient-mutant USP14<sup>C114A</sup>, enhanced SOX2 stability by reducing polyubiquitination. USP14 knockdown suppressed OSCC cell proliferation, colony formation, and tumor sphere formation in vitro and tumor growth in vivo. However, the reduction of CSC markers following USP14 knockdown was mitigated by overexpressing SOX2. These findings were verified in OSCC patient-derived CSC cells.</p><p><strong>Conclusion: </strong>This study revealed a USP14-SOX2 axis regulating the CSC properties of OSCC.</p>","PeriodicalId":19615,"journal":{"name":"Oral diseases","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USP14 promotes the cancer stem-like cell properties of OSCC via promoting SOX2 deubiquitination.\",\"authors\":\"Chang Liu, Shijie Zhou, Wei Tang\",\"doi\":\"10.1111/odi.14896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>USP14 (Ubiquitin-specific-processing protease 14) is a deubiquitinating enzyme with oncogenic effects in oral squamous cell carcinoma (OSCC). This study aims to identify new substrates of USP14 and elucidate their role in modulating cancer stem-like cells (CSCs) in OSCC.</p><p><strong>Materials and methods: </strong>Bioinformatics prediction and docking were performed using UbiBrowser 2.0 and HDOCK, respectively. OSCC cell lines and patient-derived cells were used for experimental validation, employing co-immunoprecipitation, cycloheximide chase assays, and tumor sphere formation to evaluate the effects of USP14 on SOX2 stability, ubiquitination, and CSC phenotypes.</p><p><strong>Results: </strong>USP14 upregulation was associated with worse overall survival and progression-free interval in OSCC. USP14 interacted with SOX2 with its ubiquitin carboxyl-terminal hydrolase domain. USP14 knockdown impaired SOX2 stability by increasing its polyubiquitination. Ectopic overexpression of wild-type USP14, but not the hydrolase-deficient-mutant USP14<sup>C114A</sup>, enhanced SOX2 stability by reducing polyubiquitination. USP14 knockdown suppressed OSCC cell proliferation, colony formation, and tumor sphere formation in vitro and tumor growth in vivo. However, the reduction of CSC markers following USP14 knockdown was mitigated by overexpressing SOX2. These findings were verified in OSCC patient-derived CSC cells.</p><p><strong>Conclusion: </strong>This study revealed a USP14-SOX2 axis regulating the CSC properties of OSCC.</p>\",\"PeriodicalId\":19615,\"journal\":{\"name\":\"Oral diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/odi.14896\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/odi.14896","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
USP14 promotes the cancer stem-like cell properties of OSCC via promoting SOX2 deubiquitination.
Objective: USP14 (Ubiquitin-specific-processing protease 14) is a deubiquitinating enzyme with oncogenic effects in oral squamous cell carcinoma (OSCC). This study aims to identify new substrates of USP14 and elucidate their role in modulating cancer stem-like cells (CSCs) in OSCC.
Materials and methods: Bioinformatics prediction and docking were performed using UbiBrowser 2.0 and HDOCK, respectively. OSCC cell lines and patient-derived cells were used for experimental validation, employing co-immunoprecipitation, cycloheximide chase assays, and tumor sphere formation to evaluate the effects of USP14 on SOX2 stability, ubiquitination, and CSC phenotypes.
Results: USP14 upregulation was associated with worse overall survival and progression-free interval in OSCC. USP14 interacted with SOX2 with its ubiquitin carboxyl-terminal hydrolase domain. USP14 knockdown impaired SOX2 stability by increasing its polyubiquitination. Ectopic overexpression of wild-type USP14, but not the hydrolase-deficient-mutant USP14C114A, enhanced SOX2 stability by reducing polyubiquitination. USP14 knockdown suppressed OSCC cell proliferation, colony formation, and tumor sphere formation in vitro and tumor growth in vivo. However, the reduction of CSC markers following USP14 knockdown was mitigated by overexpressing SOX2. These findings were verified in OSCC patient-derived CSC cells.
Conclusion: This study revealed a USP14-SOX2 axis regulating the CSC properties of OSCC.
期刊介绍:
Oral Diseases is a multidisciplinary and international journal with a focus on head and neck disorders, edited by leaders in the field, Professor Giovanni Lodi (Editor-in-Chief, Milan, Italy), Professor Stefano Petti (Deputy Editor, Rome, Italy) and Associate Professor Gulshan Sunavala-Dossabhoy (Deputy Editor, Shreveport, LA, USA). The journal is pre-eminent in oral medicine. Oral Diseases specifically strives to link often-isolated areas of dentistry and medicine through broad-based scholarship that includes well-designed and controlled clinical research, analytical epidemiology, and the translation of basic science in pre-clinical studies. The journal typically publishes articles relevant to many related medical specialties including especially dermatology, gastroenterology, hematology, immunology, infectious diseases, neuropsychiatry, oncology and otolaryngology. The essential requirement is that all submitted research is hypothesis-driven, with significant positive and negative results both welcomed. Equal publication emphasis is placed on etiology, pathogenesis, diagnosis, prevention and treatment.