Ingress:自动增量图处理系统

Shufeng Gong, Chao Tian, Qiang Yin, Zhengdong Wang, Song Yu, Yanfeng Zhang, Wenyuan Yu, Liang Geng, Chong Fu, Ge Yu, Jingren Zhou
{"title":"Ingress:自动增量图处理系统","authors":"Shufeng Gong, Chao Tian, Qiang Yin, Zhengdong Wang, Song Yu, Yanfeng Zhang, Wenyuan Yu, Liang Geng, Chong Fu, Ge Yu, Jingren Zhou","doi":"10.1007/s00778-024-00838-z","DOIUrl":null,"url":null,"abstract":"<p>The graph data keep growing over time in real life. The ever-growing amount of dynamic graph data demands efficient techniques of incremental graph computation. However, incremental graph algorithms are challenging to develop. Existing approaches usually require users to manually design nontrivial incremental operators, or choose different memoization strategies for certain specific types of computation, limiting the usability and generality. In light of these challenges, we propose <span>\\(\\textsf{Ingress}\\)</span>, an automated system for <i><u>in</u></i><i>cremental</i> <i><u>gr</u></i><i>aph proc</i> <i><u>ess</u></i><i>ing</i>. <span>\\(\\textsf{Ingress}\\)</span> is able to deduce the incremental counterpart of a batch vertex-centric algorithm, without the need of redesigned logic or data structures from users. Underlying <span>\\(\\textsf{Ingress}\\)</span> is an automated incrementalization framework equipped with four different memoization policies, to support all kinds of vertex-centric computations with optimized memory utilization. We identify sufficient conditions for the applicability of these policies. <span>\\(\\textsf{Ingress}\\)</span> chooses the best-fit policy for a given algorithm automatically by verifying these conditions. In addition to the ease-of-use and generalization, <span>\\(\\textsf{Ingress}\\)</span> outperforms state-of-the-art incremental graph systems by <span>\\(12.14\\times \\)</span> on average (up to <span>\\(49.23\\times \\)</span>) in efficiency.\n</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ingress: an automated incremental graph processing system\",\"authors\":\"Shufeng Gong, Chao Tian, Qiang Yin, Zhengdong Wang, Song Yu, Yanfeng Zhang, Wenyuan Yu, Liang Geng, Chong Fu, Ge Yu, Jingren Zhou\",\"doi\":\"10.1007/s00778-024-00838-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The graph data keep growing over time in real life. The ever-growing amount of dynamic graph data demands efficient techniques of incremental graph computation. However, incremental graph algorithms are challenging to develop. Existing approaches usually require users to manually design nontrivial incremental operators, or choose different memoization strategies for certain specific types of computation, limiting the usability and generality. In light of these challenges, we propose <span>\\\\(\\\\textsf{Ingress}\\\\)</span>, an automated system for <i><u>in</u></i><i>cremental</i> <i><u>gr</u></i><i>aph proc</i> <i><u>ess</u></i><i>ing</i>. <span>\\\\(\\\\textsf{Ingress}\\\\)</span> is able to deduce the incremental counterpart of a batch vertex-centric algorithm, without the need of redesigned logic or data structures from users. Underlying <span>\\\\(\\\\textsf{Ingress}\\\\)</span> is an automated incrementalization framework equipped with four different memoization policies, to support all kinds of vertex-centric computations with optimized memory utilization. We identify sufficient conditions for the applicability of these policies. <span>\\\\(\\\\textsf{Ingress}\\\\)</span> chooses the best-fit policy for a given algorithm automatically by verifying these conditions. In addition to the ease-of-use and generalization, <span>\\\\(\\\\textsf{Ingress}\\\\)</span> outperforms state-of-the-art incremental graph systems by <span>\\\\(12.14\\\\times \\\\)</span> on average (up to <span>\\\\(49.23\\\\times \\\\)</span>) in efficiency.\\n</p>\",\"PeriodicalId\":501532,\"journal\":{\"name\":\"The VLDB Journal\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The VLDB Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00778-024-00838-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-024-00838-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现实生活中,图形数据会随着时间不断增长。不断增长的动态图数据量需要高效的增量图计算技术。然而,增量图算法的开发极具挑战性。现有方法通常要求用户手动设计非难增量算子,或为某些特定类型的计算选择不同的记忆化策略,从而限制了其可用性和通用性。鉴于这些挑战,我们提出了增量图处理自动化系统(textsf{Ingress}\)。\它能够推导出以顶点为中心的批量算法的增量对应算法,而不需要用户重新设计逻辑或数据结构。\textsf{Ingress}\)的基础是一个自动增量框架,它配备了四种不同的内存化策略,可以支持各种以顶点为中心的计算,并优化内存利用率。我们确定了这些策略适用性的充分条件。\textsf{Ingress}\)通过验证这些条件,自动为给定算法选择最合适的策略。除了易用性和通用性之外,\(\textsf{Ingress}\)在效率上平均比最先进的增量图系统高出(12.14\times\)(最高可达(49.23\times\))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ingress: an automated incremental graph processing system

The graph data keep growing over time in real life. The ever-growing amount of dynamic graph data demands efficient techniques of incremental graph computation. However, incremental graph algorithms are challenging to develop. Existing approaches usually require users to manually design nontrivial incremental operators, or choose different memoization strategies for certain specific types of computation, limiting the usability and generality. In light of these challenges, we propose \(\textsf{Ingress}\), an automated system for incremental graph proc essing. \(\textsf{Ingress}\) is able to deduce the incremental counterpart of a batch vertex-centric algorithm, without the need of redesigned logic or data structures from users. Underlying \(\textsf{Ingress}\) is an automated incrementalization framework equipped with four different memoization policies, to support all kinds of vertex-centric computations with optimized memory utilization. We identify sufficient conditions for the applicability of these policies. \(\textsf{Ingress}\) chooses the best-fit policy for a given algorithm automatically by verifying these conditions. In addition to the ease-of-use and generalization, \(\textsf{Ingress}\) outperforms state-of-the-art incremental graph systems by \(12.14\times \) on average (up to \(49.23\times \)) in efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A versatile framework for attributed network clustering via K-nearest neighbor augmentation Discovering critical vertices for reinforcement of large-scale bipartite networks DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search Enabling space-time efficient range queries with REncoder AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1