Nicholas Tufillaro, Bryan P. Piazza, Sheila Reddy, Joseph Baustian, Dan Sousa, Philipp Grötsch, Ivan Lalović, Sara De Moitié, Omar Zurita
{"title":"将密西西比河下游的光学数据和硝酸盐联系起来,以便对减少营养目标进行卫星监测","authors":"Nicholas Tufillaro, Bryan P. Piazza, Sheila Reddy, Joseph Baustian, Dan Sousa, Philipp Grötsch, Ivan Lalović, Sara De Moitié, Omar Zurita","doi":"10.1002/eco.2631","DOIUrl":null,"url":null,"abstract":"<p>Hypoxic zones and associated nitrate pollution from farms, cities and industrial facilities is driving declines in water quality that affect ecosystems, economies and human health in major rivers and coastal areas worldwide. In the Mississippi River, the United States Environmental Protection Agency set a goal of reducing nitrogen loading 20% by 2025, but estimating progress towards this goal is difficult because data from in-stream gauges and laboratory samples are too sparse. Satellites have the potential to provide sufficient data across the Mississippi River, if a key methodological challenge can be overcome. Satellites provide data from visible light, but nitrates are only observable with ultraviolet light. We address this methodological challenge by using a two-step surrogate modelling procedure to link optical data and nitrates in the Lower Mississippi River. First, we correlate in situ nitrate measurements to common water quality parameters, particularly turbidity and chlorophyll, using data from water sensors installed at Baton Rouge, Louisiana, USA, and a long-term dataset from Louisiana State University. Second, we correlate these water quality data to satellite estimates of water quality parameters. We found a correlation between these water quality parameters and nitrate concentrations, as indicated by a coefficient of determination, when the relationship was viewed in nonlinear parameter space. The spatial extent of the correlation was tested with an upstream nitrate sensor 140 km north of the estimation location. These results provide proof of concept that we can develop models that use satellite data to provide large-scale monitoring of nitrates across the Mississippi River Basin and other impaired rivers, globally.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2631","citationCount":"0","resultStr":"{\"title\":\"Linking optical data and nitrates in the Lower Mississippi River to enable satellite-based monitoring of nutrient reduction goals\",\"authors\":\"Nicholas Tufillaro, Bryan P. Piazza, Sheila Reddy, Joseph Baustian, Dan Sousa, Philipp Grötsch, Ivan Lalović, Sara De Moitié, Omar Zurita\",\"doi\":\"10.1002/eco.2631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hypoxic zones and associated nitrate pollution from farms, cities and industrial facilities is driving declines in water quality that affect ecosystems, economies and human health in major rivers and coastal areas worldwide. In the Mississippi River, the United States Environmental Protection Agency set a goal of reducing nitrogen loading 20% by 2025, but estimating progress towards this goal is difficult because data from in-stream gauges and laboratory samples are too sparse. Satellites have the potential to provide sufficient data across the Mississippi River, if a key methodological challenge can be overcome. Satellites provide data from visible light, but nitrates are only observable with ultraviolet light. We address this methodological challenge by using a two-step surrogate modelling procedure to link optical data and nitrates in the Lower Mississippi River. First, we correlate in situ nitrate measurements to common water quality parameters, particularly turbidity and chlorophyll, using data from water sensors installed at Baton Rouge, Louisiana, USA, and a long-term dataset from Louisiana State University. Second, we correlate these water quality data to satellite estimates of water quality parameters. We found a correlation between these water quality parameters and nitrate concentrations, as indicated by a coefficient of determination, when the relationship was viewed in nonlinear parameter space. The spatial extent of the correlation was tested with an upstream nitrate sensor 140 km north of the estimation location. These results provide proof of concept that we can develop models that use satellite data to provide large-scale monitoring of nitrates across the Mississippi River Basin and other impaired rivers, globally.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2631\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2631\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2631","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Linking optical data and nitrates in the Lower Mississippi River to enable satellite-based monitoring of nutrient reduction goals
Hypoxic zones and associated nitrate pollution from farms, cities and industrial facilities is driving declines in water quality that affect ecosystems, economies and human health in major rivers and coastal areas worldwide. In the Mississippi River, the United States Environmental Protection Agency set a goal of reducing nitrogen loading 20% by 2025, but estimating progress towards this goal is difficult because data from in-stream gauges and laboratory samples are too sparse. Satellites have the potential to provide sufficient data across the Mississippi River, if a key methodological challenge can be overcome. Satellites provide data from visible light, but nitrates are only observable with ultraviolet light. We address this methodological challenge by using a two-step surrogate modelling procedure to link optical data and nitrates in the Lower Mississippi River. First, we correlate in situ nitrate measurements to common water quality parameters, particularly turbidity and chlorophyll, using data from water sensors installed at Baton Rouge, Louisiana, USA, and a long-term dataset from Louisiana State University. Second, we correlate these water quality data to satellite estimates of water quality parameters. We found a correlation between these water quality parameters and nitrate concentrations, as indicated by a coefficient of determination, when the relationship was viewed in nonlinear parameter space. The spatial extent of the correlation was tested with an upstream nitrate sensor 140 km north of the estimation location. These results provide proof of concept that we can develop models that use satellite data to provide large-scale monitoring of nitrates across the Mississippi River Basin and other impaired rivers, globally.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.