Yunhua Shi, Daniel Reker, James D. Byrne, Ameya R. Kirtane, Kaitlyn Hess, Zhuyi Wang, Natsuda Navamajiti, Cameron C. Young, Zachary Fralish, Zilu Zhang, Aaron Lopes, Vance Soares, Jacob Wainer, Thomas von Erlach, Lei Miao, Robert Langer, Giovanni Traverso
{"title":"通过猪组织外植体和机器学习筛选口服药物与肠道转运体的相互作用。","authors":"Yunhua Shi, Daniel Reker, James D. Byrne, Ameya R. Kirtane, Kaitlyn Hess, Zhuyi Wang, Natsuda Navamajiti, Cameron C. Young, Zachary Fralish, Zilu Zhang, Aaron Lopes, Vance Soares, Jacob Wainer, Thomas von Erlach, Lei Miao, Robert Langer, Giovanni Traverso","doi":"10.1038/s41551-023-01128-9","DOIUrl":null,"url":null,"abstract":"In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug–transporter relationships. For 24 drugs with well-characterized drug–transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug–transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model’s predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety. A machine-learning model trained on interactions between oral drugs and intestinal drug transporters obtained by modulating their expression in intact porcine tissue can be used to predict drug–transporter and drug–drug interactions.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":26.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning\",\"authors\":\"Yunhua Shi, Daniel Reker, James D. Byrne, Ameya R. Kirtane, Kaitlyn Hess, Zhuyi Wang, Natsuda Navamajiti, Cameron C. Young, Zachary Fralish, Zilu Zhang, Aaron Lopes, Vance Soares, Jacob Wainer, Thomas von Erlach, Lei Miao, Robert Langer, Giovanni Traverso\",\"doi\":\"10.1038/s41551-023-01128-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug–transporter relationships. For 24 drugs with well-characterized drug–transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug–transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model’s predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety. A machine-learning model trained on interactions between oral drugs and intestinal drug transporters obtained by modulating their expression in intact porcine tissue can be used to predict drug–transporter and drug–drug interactions.\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41551-023-01128-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-023-01128-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning
In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug–transporter relationships. For 24 drugs with well-characterized drug–transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug–transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model’s predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety. A machine-learning model trained on interactions between oral drugs and intestinal drug transporters obtained by modulating their expression in intact porcine tissue can be used to predict drug–transporter and drug–drug interactions.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.