{"title":"卤化物包光体材料对棱镜负载型混合表面等离子体共振生物传感器光学性能影响的数值研究:提高灵敏度的策略","authors":"Sourav Roy , Nibir Mondol , Diponkar Kundu , Anisha Anjum Meem , Md. Rasidul Islam , Md. Amzad Hossain , Md. Biplob Hossain","doi":"10.1016/j.sbsr.2024.100630","DOIUrl":null,"url":null,"abstract":"<div><p>The technology of surface plasmon resonance (SPR) is widely recognized and valued for its ability to rapidly and sensitively investigate biomolecular interactivities in real-time. Herein, we numerically investigate the collective influence of metal/ transition metal dichalcogenide (TMDC)/halide perovskite (HP)/2D carbon (C) and phosphorus (P) allotropes on the functionality of an SPR biosensor deploying Kretschmann configuration. The incident light wavelength is held constant at 633 nm, and radiative properties of the hybrid structure are determined using the attenuated total reflection and transfer matrix techniques. Crucial performance metrics such as quality factor (QF), figure of merit (FoM), sensitivity, and detection accuracy are calculated. The comparison is conducted and evaluated against the current literature using performance outcomes in terms of several prisms such as BK7, BAK1, BAF10, SF5, SF10, SF11, 2S2G, CaF<sub>2</sub>, and CsF, several TMDCs such as WS<sub>2</sub>, MoS<sub>2</sub>, WSe<sub>2</sub>, MoSe<sub>2</sub>, and PtSe<sub>2</sub>, several HPs such as CsPbI<sub>3</sub>, KSnI<sub>3</sub>, CsSnI<sub>3</sub>, and FASnI<sub>3</sub>, and 2D C/P allotropes such as Graphene, MXene, Black phosphorene (BP), and Blue phosphorene (BlueP) in order to search optimum parameters, and then we implement the best one in each layer of this biosensor design. It is noticed that the SPR heterostructure based on BAK1 prism, plasmonic metal Ag, tungsten disulfide (WS<sub>2</sub>) TMDC, formamidinium tin iodide (FASnI<sub>3</sub>) HP and 2D BP exhibits outstanding performance with regard to sensor performance characteristics. The observed FoM and sensitivity are 48.2/RIU and 402°/RIU, respectively. The investigation of the electric field distribution within this biosensor along the normal to the interface is also conducted using the finite difference time domain (FDTD) approach to demonstrate the unique contribution of FASnI<sub>3</sub>. The findings presented in this study are anticipated to play a key role in the improvement of plasmonic resonance-based biosensing domains like DNA hybridization or formalin detection by employing halide perovskite as an additional layer in SPR biosensors.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100630"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000126/pdfft?md5=6507c07644f71f6f9457c13e30b5d0be&pid=1-s2.0-S2214180424000126-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation into impact of halide perovskite material on the optical performance of prism-loaded hybrid surface plasmon resonance biosensor: A strategy to increase sensitivity\",\"authors\":\"Sourav Roy , Nibir Mondol , Diponkar Kundu , Anisha Anjum Meem , Md. Rasidul Islam , Md. Amzad Hossain , Md. Biplob Hossain\",\"doi\":\"10.1016/j.sbsr.2024.100630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The technology of surface plasmon resonance (SPR) is widely recognized and valued for its ability to rapidly and sensitively investigate biomolecular interactivities in real-time. Herein, we numerically investigate the collective influence of metal/ transition metal dichalcogenide (TMDC)/halide perovskite (HP)/2D carbon (C) and phosphorus (P) allotropes on the functionality of an SPR biosensor deploying Kretschmann configuration. The incident light wavelength is held constant at 633 nm, and radiative properties of the hybrid structure are determined using the attenuated total reflection and transfer matrix techniques. Crucial performance metrics such as quality factor (QF), figure of merit (FoM), sensitivity, and detection accuracy are calculated. The comparison is conducted and evaluated against the current literature using performance outcomes in terms of several prisms such as BK7, BAK1, BAF10, SF5, SF10, SF11, 2S2G, CaF<sub>2</sub>, and CsF, several TMDCs such as WS<sub>2</sub>, MoS<sub>2</sub>, WSe<sub>2</sub>, MoSe<sub>2</sub>, and PtSe<sub>2</sub>, several HPs such as CsPbI<sub>3</sub>, KSnI<sub>3</sub>, CsSnI<sub>3</sub>, and FASnI<sub>3</sub>, and 2D C/P allotropes such as Graphene, MXene, Black phosphorene (BP), and Blue phosphorene (BlueP) in order to search optimum parameters, and then we implement the best one in each layer of this biosensor design. It is noticed that the SPR heterostructure based on BAK1 prism, plasmonic metal Ag, tungsten disulfide (WS<sub>2</sub>) TMDC, formamidinium tin iodide (FASnI<sub>3</sub>) HP and 2D BP exhibits outstanding performance with regard to sensor performance characteristics. The observed FoM and sensitivity are 48.2/RIU and 402°/RIU, respectively. The investigation of the electric field distribution within this biosensor along the normal to the interface is also conducted using the finite difference time domain (FDTD) approach to demonstrate the unique contribution of FASnI<sub>3</sub>. The findings presented in this study are anticipated to play a key role in the improvement of plasmonic resonance-based biosensing domains like DNA hybridization or formalin detection by employing halide perovskite as an additional layer in SPR biosensors.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"43 \",\"pages\":\"Article 100630\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000126/pdfft?md5=6507c07644f71f6f9457c13e30b5d0be&pid=1-s2.0-S2214180424000126-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Numerical investigation into impact of halide perovskite material on the optical performance of prism-loaded hybrid surface plasmon resonance biosensor: A strategy to increase sensitivity
The technology of surface plasmon resonance (SPR) is widely recognized and valued for its ability to rapidly and sensitively investigate biomolecular interactivities in real-time. Herein, we numerically investigate the collective influence of metal/ transition metal dichalcogenide (TMDC)/halide perovskite (HP)/2D carbon (C) and phosphorus (P) allotropes on the functionality of an SPR biosensor deploying Kretschmann configuration. The incident light wavelength is held constant at 633 nm, and radiative properties of the hybrid structure are determined using the attenuated total reflection and transfer matrix techniques. Crucial performance metrics such as quality factor (QF), figure of merit (FoM), sensitivity, and detection accuracy are calculated. The comparison is conducted and evaluated against the current literature using performance outcomes in terms of several prisms such as BK7, BAK1, BAF10, SF5, SF10, SF11, 2S2G, CaF2, and CsF, several TMDCs such as WS2, MoS2, WSe2, MoSe2, and PtSe2, several HPs such as CsPbI3, KSnI3, CsSnI3, and FASnI3, and 2D C/P allotropes such as Graphene, MXene, Black phosphorene (BP), and Blue phosphorene (BlueP) in order to search optimum parameters, and then we implement the best one in each layer of this biosensor design. It is noticed that the SPR heterostructure based on BAK1 prism, plasmonic metal Ag, tungsten disulfide (WS2) TMDC, formamidinium tin iodide (FASnI3) HP and 2D BP exhibits outstanding performance with regard to sensor performance characteristics. The observed FoM and sensitivity are 48.2/RIU and 402°/RIU, respectively. The investigation of the electric field distribution within this biosensor along the normal to the interface is also conducted using the finite difference time domain (FDTD) approach to demonstrate the unique contribution of FASnI3. The findings presented in this study are anticipated to play a key role in the improvement of plasmonic resonance-based biosensing domains like DNA hybridization or formalin detection by employing halide perovskite as an additional layer in SPR biosensors.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.