{"title":"全基因组关联研究:栽培珙桐对黄锈病、白粉病和三尖杉斑点病的抗性","authors":"T. Miedaner, M. Afzal, C. F. Longin","doi":"10.1007/s10681-024-03296-4","DOIUrl":null,"url":null,"abstract":"<p>Emmer is a progenitor of bread wheat and evolved in the Levant together with the yellow rust (YR), powdery mildew (PM) fungi, and a precursor of <i>Zymoseptoria tritici</i> causing Septoria tritici blotch (STB). We performed a genome-wide association mapping for the three disease resistances with 143 cultivated emmer accessions in multi-environmental trials. Significant (P < 0.001) genotypic variation was found with high heritabilities for the resistances to the two biotrophs and a moderate heritability for STB resistance. For YR, PM, and STB severity nine, three, and seven marker-trait associations, respectively, were detected that were significant across all environments. Most of them were of low to moderate effect, but for PM resistance a potentially new major gene was found on chromosome 7AS. Genomic prediction abilities were high throughout for all three resistances (≥ 0.8) and decreased only slightly for YR and PM resistances when the prediction was done for the second year with the first year as training set (≥ 0.7). For STB resistance prediction ability was much lower in this scenario (0.4). Despite this, genomic selection should be advantageous given the large number of small QTLs responsible for quantitative disease resistances. A challenge for the future is to combine these multiple disease resistances with better lodging tolerance and higher grain yield.</p>","PeriodicalId":11803,"journal":{"name":"Euphytica","volume":"85 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide association study for resistances to yellow rust, powdery mildew, and Septoria tritici blotch in cultivated emmer\",\"authors\":\"T. Miedaner, M. Afzal, C. F. Longin\",\"doi\":\"10.1007/s10681-024-03296-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emmer is a progenitor of bread wheat and evolved in the Levant together with the yellow rust (YR), powdery mildew (PM) fungi, and a precursor of <i>Zymoseptoria tritici</i> causing Septoria tritici blotch (STB). We performed a genome-wide association mapping for the three disease resistances with 143 cultivated emmer accessions in multi-environmental trials. Significant (P < 0.001) genotypic variation was found with high heritabilities for the resistances to the two biotrophs and a moderate heritability for STB resistance. For YR, PM, and STB severity nine, three, and seven marker-trait associations, respectively, were detected that were significant across all environments. Most of them were of low to moderate effect, but for PM resistance a potentially new major gene was found on chromosome 7AS. Genomic prediction abilities were high throughout for all three resistances (≥ 0.8) and decreased only slightly for YR and PM resistances when the prediction was done for the second year with the first year as training set (≥ 0.7). For STB resistance prediction ability was much lower in this scenario (0.4). Despite this, genomic selection should be advantageous given the large number of small QTLs responsible for quantitative disease resistances. A challenge for the future is to combine these multiple disease resistances with better lodging tolerance and higher grain yield.</p>\",\"PeriodicalId\":11803,\"journal\":{\"name\":\"Euphytica\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euphytica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10681-024-03296-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euphytica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10681-024-03296-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Genome-wide association study for resistances to yellow rust, powdery mildew, and Septoria tritici blotch in cultivated emmer
Emmer is a progenitor of bread wheat and evolved in the Levant together with the yellow rust (YR), powdery mildew (PM) fungi, and a precursor of Zymoseptoria tritici causing Septoria tritici blotch (STB). We performed a genome-wide association mapping for the three disease resistances with 143 cultivated emmer accessions in multi-environmental trials. Significant (P < 0.001) genotypic variation was found with high heritabilities for the resistances to the two biotrophs and a moderate heritability for STB resistance. For YR, PM, and STB severity nine, three, and seven marker-trait associations, respectively, were detected that were significant across all environments. Most of them were of low to moderate effect, but for PM resistance a potentially new major gene was found on chromosome 7AS. Genomic prediction abilities were high throughout for all three resistances (≥ 0.8) and decreased only slightly for YR and PM resistances when the prediction was done for the second year with the first year as training set (≥ 0.7). For STB resistance prediction ability was much lower in this scenario (0.4). Despite this, genomic selection should be advantageous given the large number of small QTLs responsible for quantitative disease resistances. A challenge for the future is to combine these multiple disease resistances with better lodging tolerance and higher grain yield.
期刊介绍:
Euphytica is an international journal on theoretical and applied aspects of plant breeding. It publishes critical reviews and papers on the results of original research related to plant breeding.
The integration of modern and traditional plant breeding is a growing field of research using transgenic crop plants and/or marker assisted breeding in combination with traditional breeding tools. The content should cover the interests of researchers directly or indirectly involved in plant breeding, at universities, breeding institutes, seed industries, plant biotech companies and industries using plant raw materials, and promote stability, adaptability and sustainability in agriculture and agro-industries.