{"title":"柔性旋转表面上的生物对流麦克斯韦铁流体流动","authors":"Anupam Bhandari","doi":"10.1016/j.medengphy.2024.104123","DOIUrl":null,"url":null,"abstract":"<div><p>The current research findings will have potential applications in the development of drug-targeted and self-sterilizing technologies. This research investigates the bio-convective flow of Maxwell ferrofluid over a flexible spinning plate in the presence of a stationary magnetic field in this paper. This theoretical model is based on the CattaneoChristov theories, the Buongiorno microorganism model, and the Shliomis model, and it is solved using the finite element technique. Using the Galerkin weighted residual approach in COMSOL Multiphysics, the non-dimensional equations of this Maxwell ferrofluid model are numerically solved. The concentration and motility of the organism decrease with an increase in the ferromagnetic interaction number, concentration relaxation time parameter, Lewis number, and stretching parameter. In addition to increasing local heat transfer, local mass transfer, and local density of microorganisms, the ferromagnetic interaction number lowers the stress on the surface of the disk.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-convective maxwell ferrofluid flow over a flexible spinning surface\",\"authors\":\"Anupam Bhandari\",\"doi\":\"10.1016/j.medengphy.2024.104123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current research findings will have potential applications in the development of drug-targeted and self-sterilizing technologies. This research investigates the bio-convective flow of Maxwell ferrofluid over a flexible spinning plate in the presence of a stationary magnetic field in this paper. This theoretical model is based on the CattaneoChristov theories, the Buongiorno microorganism model, and the Shliomis model, and it is solved using the finite element technique. Using the Galerkin weighted residual approach in COMSOL Multiphysics, the non-dimensional equations of this Maxwell ferrofluid model are numerically solved. The concentration and motility of the organism decrease with an increase in the ferromagnetic interaction number, concentration relaxation time parameter, Lewis number, and stretching parameter. In addition to increasing local heat transfer, local mass transfer, and local density of microorganisms, the ferromagnetic interaction number lowers the stress on the surface of the disk.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000249\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000249","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Bio-convective maxwell ferrofluid flow over a flexible spinning surface
The current research findings will have potential applications in the development of drug-targeted and self-sterilizing technologies. This research investigates the bio-convective flow of Maxwell ferrofluid over a flexible spinning plate in the presence of a stationary magnetic field in this paper. This theoretical model is based on the CattaneoChristov theories, the Buongiorno microorganism model, and the Shliomis model, and it is solved using the finite element technique. Using the Galerkin weighted residual approach in COMSOL Multiphysics, the non-dimensional equations of this Maxwell ferrofluid model are numerically solved. The concentration and motility of the organism decrease with an increase in the ferromagnetic interaction number, concentration relaxation time parameter, Lewis number, and stretching parameter. In addition to increasing local heat transfer, local mass transfer, and local density of microorganisms, the ferromagnetic interaction number lowers the stress on the surface of the disk.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.