疫苗效力试验的贝叶斯序列概率比检验

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-02-20 DOI:10.1007/s00180-024-01458-5
Erina Paul, Santosh Sutradhar, Jonathan Hartzel, Devan V. Mehrotra
{"title":"疫苗效力试验的贝叶斯序列概率比检验","authors":"Erina Paul, Santosh Sutradhar, Jonathan Hartzel, Devan V. Mehrotra","doi":"10.1007/s00180-024-01458-5","DOIUrl":null,"url":null,"abstract":"<p>Designing vaccine efficacy (VE) trials often requires recruiting large numbers of participants when the diseases of interest have a low incidence. When developing novel vaccines, such as for COVID-19 disease, the plausible range of VE is quite large at the design stage. Thus, the number of events needed to demonstrate efficacy above a pre-defined regulatory threshold can be difficult to predict and the time needed to accrue the necessary events can often be long. Therefore, it is advantageous to evaluate the efficacy at earlier interim analysis in the trial to potentially allow the trials to stop early for overwhelming VE or futility. In such cases, incorporating interim analyses through the use of the sequential probability ratio test (SPRT) can be helpful to allow for multiple analyses while controlling for both type-I and type-II errors. In this article, we propose a Bayesian SPRT for designing a vaccine trial for comparing a test vaccine with a control assuming two Poisson incidence rates. We provide guidance on how to choose the prior distribution and how to optimize the number of events for interim analyses to maximize the efficiency of the design. Through simulations, we demonstrate how the proposed Bayesian SPRT performs better when compared with the corresponding frequentist SPRT. An R repository to implement the proposed method is placed at: https://github.com/Merck/bayesiansprt.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian sequential probability ratio test for vaccine efficacy trials\",\"authors\":\"Erina Paul, Santosh Sutradhar, Jonathan Hartzel, Devan V. Mehrotra\",\"doi\":\"10.1007/s00180-024-01458-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Designing vaccine efficacy (VE) trials often requires recruiting large numbers of participants when the diseases of interest have a low incidence. When developing novel vaccines, such as for COVID-19 disease, the plausible range of VE is quite large at the design stage. Thus, the number of events needed to demonstrate efficacy above a pre-defined regulatory threshold can be difficult to predict and the time needed to accrue the necessary events can often be long. Therefore, it is advantageous to evaluate the efficacy at earlier interim analysis in the trial to potentially allow the trials to stop early for overwhelming VE or futility. In such cases, incorporating interim analyses through the use of the sequential probability ratio test (SPRT) can be helpful to allow for multiple analyses while controlling for both type-I and type-II errors. In this article, we propose a Bayesian SPRT for designing a vaccine trial for comparing a test vaccine with a control assuming two Poisson incidence rates. We provide guidance on how to choose the prior distribution and how to optimize the number of events for interim analyses to maximize the efficiency of the design. Through simulations, we demonstrate how the proposed Bayesian SPRT performs better when compared with the corresponding frequentist SPRT. An R repository to implement the proposed method is placed at: https://github.com/Merck/bayesiansprt.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01458-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01458-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

当相关疾病的发病率较低时,设计疫苗效力(VE)试验往往需要招募大量参与者。在开发新型疫苗(如 COVID-19 疾病)时,在设计阶段 VE 的合理范围相当大。因此,要证明疗效超过预先设定的监管阈值所需的事件数量可能难以预测,而积累必要事件所需的时间往往很长。因此,在试验的早期中期分析中对疗效进行评估是很有好处的,这样有可能使试验因VE过高或无效而提前结束。在这种情况下,通过使用序贯概率比检验(SPRT)进行中期分析有助于进行多重分析,同时控制 I 型和 II 型误差。在本文中,我们提出了一种贝叶斯概率比检验方法,用于设计疫苗试验,在假设两种泊松发病率的情况下比较试验疫苗和对照疫苗。我们就如何选择先验分布以及如何优化中期分析的事件数以最大限度地提高设计效率提供了指导。通过模拟,我们展示了所提出的贝叶斯 SPRT 与相应的频数 SPRT 相比如何表现得更好。实现所提方法的 R 代码库位于:https://github.com/Merck/bayesiansprt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian sequential probability ratio test for vaccine efficacy trials

Designing vaccine efficacy (VE) trials often requires recruiting large numbers of participants when the diseases of interest have a low incidence. When developing novel vaccines, such as for COVID-19 disease, the plausible range of VE is quite large at the design stage. Thus, the number of events needed to demonstrate efficacy above a pre-defined regulatory threshold can be difficult to predict and the time needed to accrue the necessary events can often be long. Therefore, it is advantageous to evaluate the efficacy at earlier interim analysis in the trial to potentially allow the trials to stop early for overwhelming VE or futility. In such cases, incorporating interim analyses through the use of the sequential probability ratio test (SPRT) can be helpful to allow for multiple analyses while controlling for both type-I and type-II errors. In this article, we propose a Bayesian SPRT for designing a vaccine trial for comparing a test vaccine with a control assuming two Poisson incidence rates. We provide guidance on how to choose the prior distribution and how to optimize the number of events for interim analyses to maximize the efficiency of the design. Through simulations, we demonstrate how the proposed Bayesian SPRT performs better when compared with the corresponding frequentist SPRT. An R repository to implement the proposed method is placed at: https://github.com/Merck/bayesiansprt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1