鲍曼不动杆菌锌吸收抑制因子(Zur)的特征。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-02-22 DOI:10.1021/acs.biochem.3c00679
Minyong Kim, My Tra Le, Lixin Fan, Courtney Campbell, Sambuddha Sen, Daiana A. Capdevila, Timothy L. Stemmler and David P. Giedroc*, 
{"title":"鲍曼不动杆菌锌吸收抑制因子(Zur)的特征。","authors":"Minyong Kim,&nbsp;My Tra Le,&nbsp;Lixin Fan,&nbsp;Courtney Campbell,&nbsp;Sambuddha Sen,&nbsp;Daiana A. Capdevila,&nbsp;Timothy L. Stemmler and David P. Giedroc*,&nbsp;","doi":"10.1021/acs.biochem.3c00679","DOIUrl":null,"url":null,"abstract":"<p >Bacterial cells tightly regulate the intracellular concentrations of essential transition metal ions by deploying a panel of metal-regulated transcriptional repressors and activators that bind to operator-promoter regions upstream of regulated genes. Like other zinc uptake regulator (Zur) proteins, <i>Acinetobacter baumannii</i> Zur represses transcription of its regulon when Zn<sup>II</sup> is replete and binds more weakly to DNA when Zn<sup>II</sup> is limiting. Previous studies established that Zur proteins are homodimeric and harbor at least two metal sites per protomer or four per dimer. Cd<sup>II</sup> X-ray absorption spectroscopy (XAS) of the Cd<sub>2</sub>Zn<sub>2</sub> <i>Ab</i>Zur metalloderivative with Cd<sup>II</sup> bound to the allosteric sites reveals a S(N/O)<sub>3</sub> first coordination shell. Site-directed mutagenesis suggests that H89 and C100 from the N-terminal DNA binding domain and H107 and E122 from the C-terminal dimerization domain comprise the regulatory metal site. <i>K</i><sub>Zn</sub> for this allosteric site is 6.0 (±2.2) × 10<sup>12</sup> M<sup>–1</sup> with a functional “division of labor” among the four metal ligands. N-terminal domain ligands H89 and C100 contribute far more to <i>K</i><sub>Zn</sub> than H107 and E122, while C100S <i>Ab</i>Zur uniquely fails to bind to DNA tightly as measured by an <i>in vitro</i> transcription assay. The heterotropic allosteric coupling free energy, Δ<i>G</i><sub>c</sub>, is negative, consistent with a higher <i>K</i><sub>Zn</sub> for the <i>Ab</i>Zur-DNA complex and defining a bioavailable Zn<sup>II</sup> set-point of ≈6 × 10<sup>–14</sup> M. Small-angle X-ray scattering (SAXS) experiments reveal that only the wild-type Zn homodimer undergoes allosteric switching, while the C100S <i>Ab</i>Zur fails to switch. These data collectively suggest that switching to a high affinity DNA-binding conformation involves a rotation/translation of one protomer relative to the other in a way that is dependent on the integrity of C100. We place these findings in the context of other Zur proteins and Fur family repressors more broadly.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Zinc Uptake Repressor (Zur) from Acinetobacter baumannii\",\"authors\":\"Minyong Kim,&nbsp;My Tra Le,&nbsp;Lixin Fan,&nbsp;Courtney Campbell,&nbsp;Sambuddha Sen,&nbsp;Daiana A. Capdevila,&nbsp;Timothy L. Stemmler and David P. Giedroc*,&nbsp;\",\"doi\":\"10.1021/acs.biochem.3c00679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bacterial cells tightly regulate the intracellular concentrations of essential transition metal ions by deploying a panel of metal-regulated transcriptional repressors and activators that bind to operator-promoter regions upstream of regulated genes. Like other zinc uptake regulator (Zur) proteins, <i>Acinetobacter baumannii</i> Zur represses transcription of its regulon when Zn<sup>II</sup> is replete and binds more weakly to DNA when Zn<sup>II</sup> is limiting. Previous studies established that Zur proteins are homodimeric and harbor at least two metal sites per protomer or four per dimer. Cd<sup>II</sup> X-ray absorption spectroscopy (XAS) of the Cd<sub>2</sub>Zn<sub>2</sub> <i>Ab</i>Zur metalloderivative with Cd<sup>II</sup> bound to the allosteric sites reveals a S(N/O)<sub>3</sub> first coordination shell. Site-directed mutagenesis suggests that H89 and C100 from the N-terminal DNA binding domain and H107 and E122 from the C-terminal dimerization domain comprise the regulatory metal site. <i>K</i><sub>Zn</sub> for this allosteric site is 6.0 (±2.2) × 10<sup>12</sup> M<sup>–1</sup> with a functional “division of labor” among the four metal ligands. N-terminal domain ligands H89 and C100 contribute far more to <i>K</i><sub>Zn</sub> than H107 and E122, while C100S <i>Ab</i>Zur uniquely fails to bind to DNA tightly as measured by an <i>in vitro</i> transcription assay. The heterotropic allosteric coupling free energy, Δ<i>G</i><sub>c</sub>, is negative, consistent with a higher <i>K</i><sub>Zn</sub> for the <i>Ab</i>Zur-DNA complex and defining a bioavailable Zn<sup>II</sup> set-point of ≈6 × 10<sup>–14</sup> M. Small-angle X-ray scattering (SAXS) experiments reveal that only the wild-type Zn homodimer undergoes allosteric switching, while the C100S <i>Ab</i>Zur fails to switch. These data collectively suggest that switching to a high affinity DNA-binding conformation involves a rotation/translation of one protomer relative to the other in a way that is dependent on the integrity of C100. We place these findings in the context of other Zur proteins and Fur family repressors more broadly.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biochem.3c00679\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.3c00679","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌细胞通过部署一组金属调控转录抑制因子和激活因子,与调控基因上游的运算子-启动子区域结合,严格调控细胞内必需过渡金属离子的浓度。与其他锌吸收调节蛋白(Zur)一样,鲍曼不动杆菌 Zur 在 ZnII 富集时抑制其调节子的转录,而在 ZnII 限制时与 DNA 的结合较弱。先前的研究证实,Zur 蛋白是同源二聚体,每个原体至少有两个金属位点,每个二聚体至少有四个金属位点。Cd2Zn2 AbZur 金属衍生物的 CdII X 射线吸收光谱(XAS)显示,CdII 与异构位点结合后,第一配位层为 S(N/O)3。定点突变表明,N 端 DNA 结合结构域的 H89 和 C100 以及 C 端二聚化结构域的 H107 和 E122 构成了调节金属位点。该异构位点的 KZn 为 6.0 (±2.2) × 1012 M-1,四种金属配体进行了功能性 "分工"。N 端结构域配体 H89 和 C100 对 KZn 的贡献远大于 H107 和 E122,而 C100S AbZur 独一无二地无法与 DNA 紧密结合(通过体外转录试验测定)。小角 X 射线散射(SAXS)实验显示,只有野生型 Zn 同源二聚体发生了异构转换,而 C100S AbZur 则没有发生转换。这些数据共同表明,向高亲和力 DNA 结合构象的转换涉及一个原体相对于另一个原体的旋转/平移,其方式取决于 C100 的完整性。我们将这些发现与其他 Zur 蛋白和更广泛的 Fur 家族抑制因子联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of the Zinc Uptake Repressor (Zur) from Acinetobacter baumannii

Bacterial cells tightly regulate the intracellular concentrations of essential transition metal ions by deploying a panel of metal-regulated transcriptional repressors and activators that bind to operator-promoter regions upstream of regulated genes. Like other zinc uptake regulator (Zur) proteins, Acinetobacter baumannii Zur represses transcription of its regulon when ZnII is replete and binds more weakly to DNA when ZnII is limiting. Previous studies established that Zur proteins are homodimeric and harbor at least two metal sites per protomer or four per dimer. CdII X-ray absorption spectroscopy (XAS) of the Cd2Zn2 AbZur metalloderivative with CdII bound to the allosteric sites reveals a S(N/O)3 first coordination shell. Site-directed mutagenesis suggests that H89 and C100 from the N-terminal DNA binding domain and H107 and E122 from the C-terminal dimerization domain comprise the regulatory metal site. KZn for this allosteric site is 6.0 (±2.2) × 1012 M–1 with a functional “division of labor” among the four metal ligands. N-terminal domain ligands H89 and C100 contribute far more to KZn than H107 and E122, while C100S AbZur uniquely fails to bind to DNA tightly as measured by an in vitro transcription assay. The heterotropic allosteric coupling free energy, ΔGc, is negative, consistent with a higher KZn for the AbZur-DNA complex and defining a bioavailable ZnII set-point of ≈6 × 10–14 M. Small-angle X-ray scattering (SAXS) experiments reveal that only the wild-type Zn homodimer undergoes allosteric switching, while the C100S AbZur fails to switch. These data collectively suggest that switching to a high affinity DNA-binding conformation involves a rotation/translation of one protomer relative to the other in a way that is dependent on the integrity of C100. We place these findings in the context of other Zur proteins and Fur family repressors more broadly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Fingerprinting Tertiary Structure in Complex RNAs Using Single-Molecule Correlated Chemical Probing. Mammalian Esterase Activity: Implications for Peptide Prodrugs. How ATP and dATP Act as Molecular Switches to Regulate Enzymatic Activity in the Prototypical Bacterial Class Ia Ribonucleotide Reductase. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Periostin Is a Disulfide-Bonded Homodimer and Forms a Complex with Fibronectin in the Human Skin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1