{"title":"现实检查:我们能从珊瑚礁紫外线过滤生态风险评估中得到什么?","authors":"Sandy Raimondo","doi":"10.1002/ieam.4889","DOIUrl":null,"url":null,"abstract":"<p>In 2018, Hawai'i banned the sale and distribution of sunscreens containing the ultraviolet (UV) filters oxybenzone and octinoxate based on laboratory studies that indicated that they have adverse impacts on coral reefs (Downs et al., <span>2014</span>). While this was not the first ban on sunscreen UV filters, it was the most widely reported and controversial in the United States. Proponents of the ban highlighted the importance of coral reefs and the multitude of stressors contributing to their rapid global declines. Those who opposed it expressed concerns that it may reduce sunscreen options and lead to increasing incidents of skin cancers; this was succinctly summarized as “Essentially, … two ingredients that are both safe [for humans] and effective for use in sunscreen are being banned … on the basis of a single study…” (<i>Hawai'i bans sunscreens that harm coral reefs</i>, CNN July 3, 2018). While most can agree that the effectiveness of a chemical should not negate risks to the environment (Carson, <span>1962</span>), it is important to realize that chemicals are often regulated on the basis of a single study—or <i>no</i> studies at all. For example, new chemicals registered under the Toxic Substance Control Act (TSCA) may be regulated based solely on chemical structure. However, such reactions highlight that most stakeholders do not have a good understanding of how environmental risks are evaluated and will be disappointed in the data available to inform such decisions for UV filters.</p><p>In 2020, US Congress passed an omnibus appropriations bill requiring the USEPA to partner with the National Academy of Sciences (NAS) to conduct a review of potential impacts of currently marketed UV filters on the environment. The mandate was to summarize the scientific literature, identify additional research needed to conduct an ecological risk assessment (ERA), and identify potential public health implications of reduced sunscreen use. The NAS found that UV filters are detected in water samples from around the world in concentrations that cause effects to organisms in laboratory tests and are found in the tissues of organisms ranging from crayfish to dolphins. The NAS recommended that the USEPA should conduct an ERA for all currently marketed UV filters and any new ones that become available (National Academies of Sciences [NAS], <span>2022</span>). Ecological risk assessments evaluate the likelihood that the environment might be adversely impacted by a chemical and are often conducted in a tiered process that begins with a more protective screening-level assessment and moves to more realistic assessments, as needed, to reduce uncertainties. Ecological risk assessments are comprised of <i>exposure</i> and <i>effects</i> analyses that are integrated into a <i>risk characterization</i>. Each of these analyses contains their own uncertainty that provide fodder for criticism, even though the uncertainties typically stem from lack of or limited data that are beyond the control of the risk assessor. First, I review the uncertainties associated with the primary phases of the ERA as relevant to UV filters in marine environments to provide a reality check of what we can expect from such efforts. From there, I provide a recommendation for the next steps that will require a global network of collaboration to provide useful and impactful assessment to reduce the environmental impacts of UV filters.</p><p><b>Sandy Raimondo</b>: Writing—original draft; writing—review editing.</p><p>The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the USEPA.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":"20 2","pages":"309-311"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ieam.4889","citationCount":"0","resultStr":"{\"title\":\"Reality check: What can we expect from an ecological risk assessment of UV filters on coral reefs?\",\"authors\":\"Sandy Raimondo\",\"doi\":\"10.1002/ieam.4889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 2018, Hawai'i banned the sale and distribution of sunscreens containing the ultraviolet (UV) filters oxybenzone and octinoxate based on laboratory studies that indicated that they have adverse impacts on coral reefs (Downs et al., <span>2014</span>). While this was not the first ban on sunscreen UV filters, it was the most widely reported and controversial in the United States. Proponents of the ban highlighted the importance of coral reefs and the multitude of stressors contributing to their rapid global declines. Those who opposed it expressed concerns that it may reduce sunscreen options and lead to increasing incidents of skin cancers; this was succinctly summarized as “Essentially, … two ingredients that are both safe [for humans] and effective for use in sunscreen are being banned … on the basis of a single study…” (<i>Hawai'i bans sunscreens that harm coral reefs</i>, CNN July 3, 2018). While most can agree that the effectiveness of a chemical should not negate risks to the environment (Carson, <span>1962</span>), it is important to realize that chemicals are often regulated on the basis of a single study—or <i>no</i> studies at all. For example, new chemicals registered under the Toxic Substance Control Act (TSCA) may be regulated based solely on chemical structure. However, such reactions highlight that most stakeholders do not have a good understanding of how environmental risks are evaluated and will be disappointed in the data available to inform such decisions for UV filters.</p><p>In 2020, US Congress passed an omnibus appropriations bill requiring the USEPA to partner with the National Academy of Sciences (NAS) to conduct a review of potential impacts of currently marketed UV filters on the environment. The mandate was to summarize the scientific literature, identify additional research needed to conduct an ecological risk assessment (ERA), and identify potential public health implications of reduced sunscreen use. The NAS found that UV filters are detected in water samples from around the world in concentrations that cause effects to organisms in laboratory tests and are found in the tissues of organisms ranging from crayfish to dolphins. The NAS recommended that the USEPA should conduct an ERA for all currently marketed UV filters and any new ones that become available (National Academies of Sciences [NAS], <span>2022</span>). Ecological risk assessments evaluate the likelihood that the environment might be adversely impacted by a chemical and are often conducted in a tiered process that begins with a more protective screening-level assessment and moves to more realistic assessments, as needed, to reduce uncertainties. Ecological risk assessments are comprised of <i>exposure</i> and <i>effects</i> analyses that are integrated into a <i>risk characterization</i>. Each of these analyses contains their own uncertainty that provide fodder for criticism, even though the uncertainties typically stem from lack of or limited data that are beyond the control of the risk assessor. First, I review the uncertainties associated with the primary phases of the ERA as relevant to UV filters in marine environments to provide a reality check of what we can expect from such efforts. From there, I provide a recommendation for the next steps that will require a global network of collaboration to provide useful and impactful assessment to reduce the environmental impacts of UV filters.</p><p><b>Sandy Raimondo</b>: Writing—original draft; writing—review editing.</p><p>The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the USEPA.</p>\",\"PeriodicalId\":13557,\"journal\":{\"name\":\"Integrated Environmental Assessment and Management\",\"volume\":\"20 2\",\"pages\":\"309-311\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ieam.4889\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Environmental Assessment and Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ieam.4889\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ieam.4889","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Reality check: What can we expect from an ecological risk assessment of UV filters on coral reefs?
In 2018, Hawai'i banned the sale and distribution of sunscreens containing the ultraviolet (UV) filters oxybenzone and octinoxate based on laboratory studies that indicated that they have adverse impacts on coral reefs (Downs et al., 2014). While this was not the first ban on sunscreen UV filters, it was the most widely reported and controversial in the United States. Proponents of the ban highlighted the importance of coral reefs and the multitude of stressors contributing to their rapid global declines. Those who opposed it expressed concerns that it may reduce sunscreen options and lead to increasing incidents of skin cancers; this was succinctly summarized as “Essentially, … two ingredients that are both safe [for humans] and effective for use in sunscreen are being banned … on the basis of a single study…” (Hawai'i bans sunscreens that harm coral reefs, CNN July 3, 2018). While most can agree that the effectiveness of a chemical should not negate risks to the environment (Carson, 1962), it is important to realize that chemicals are often regulated on the basis of a single study—or no studies at all. For example, new chemicals registered under the Toxic Substance Control Act (TSCA) may be regulated based solely on chemical structure. However, such reactions highlight that most stakeholders do not have a good understanding of how environmental risks are evaluated and will be disappointed in the data available to inform such decisions for UV filters.
In 2020, US Congress passed an omnibus appropriations bill requiring the USEPA to partner with the National Academy of Sciences (NAS) to conduct a review of potential impacts of currently marketed UV filters on the environment. The mandate was to summarize the scientific literature, identify additional research needed to conduct an ecological risk assessment (ERA), and identify potential public health implications of reduced sunscreen use. The NAS found that UV filters are detected in water samples from around the world in concentrations that cause effects to organisms in laboratory tests and are found in the tissues of organisms ranging from crayfish to dolphins. The NAS recommended that the USEPA should conduct an ERA for all currently marketed UV filters and any new ones that become available (National Academies of Sciences [NAS], 2022). Ecological risk assessments evaluate the likelihood that the environment might be adversely impacted by a chemical and are often conducted in a tiered process that begins with a more protective screening-level assessment and moves to more realistic assessments, as needed, to reduce uncertainties. Ecological risk assessments are comprised of exposure and effects analyses that are integrated into a risk characterization. Each of these analyses contains their own uncertainty that provide fodder for criticism, even though the uncertainties typically stem from lack of or limited data that are beyond the control of the risk assessor. First, I review the uncertainties associated with the primary phases of the ERA as relevant to UV filters in marine environments to provide a reality check of what we can expect from such efforts. From there, I provide a recommendation for the next steps that will require a global network of collaboration to provide useful and impactful assessment to reduce the environmental impacts of UV filters.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.