Ahmed Mohammed Salman, Esmaeil Babaei, Ahmed Salim Kadhim Al-Khafaji
{"title":"探索七叶皂苷(hesperetin)处理的乳腺癌细胞(BT-474)中 MLH1 和 MSH2 基因表达的调节。","authors":"Ahmed Mohammed Salman, Esmaeil Babaei, Ahmed Salim Kadhim Al-Khafaji","doi":"10.4103/japtr.japtr_279_23","DOIUrl":null,"url":null,"abstract":"<p><p>The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC<sub>50</sub>) of HSP in BT-474 cancer cells after a 48-h exposure was 279.2 μM/ml, while the IC<sub>50</sub> in normal cells was 855.4 μM/ml. The cytotoxicity of HSP was more significant in cancer cell lines than in normal cell lines and this aspect presents a favorable factor in utilizing the drug for the treatment of breast cancer. The apoptotic effect of HSP in BT-474 cells was investigated, and it was found that the higher the concentration of HSP more the cells underwent apoptosis. Furthermore, the highest concentration of HSP led to overexpression of the MLH1 and MSH2 genes in both breast cancer and normal cell lines. Overall, our study suggests that HSP has an anticancer effect on breast cancer cell lines, and the effect is concentration dependent.</p>","PeriodicalId":14877,"journal":{"name":"Journal of Advanced Pharmaceutical Technology & Research","volume":"15 1","pages":"43-48"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880915/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the modulation of MLH1 and MSH2 gene expression in hesperetin-treated breast cancer cells (BT-474).\",\"authors\":\"Ahmed Mohammed Salman, Esmaeil Babaei, Ahmed Salim Kadhim Al-Khafaji\",\"doi\":\"10.4103/japtr.japtr_279_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC<sub>50</sub>) of HSP in BT-474 cancer cells after a 48-h exposure was 279.2 μM/ml, while the IC<sub>50</sub> in normal cells was 855.4 μM/ml. The cytotoxicity of HSP was more significant in cancer cell lines than in normal cell lines and this aspect presents a favorable factor in utilizing the drug for the treatment of breast cancer. The apoptotic effect of HSP in BT-474 cells was investigated, and it was found that the higher the concentration of HSP more the cells underwent apoptosis. Furthermore, the highest concentration of HSP led to overexpression of the MLH1 and MSH2 genes in both breast cancer and normal cell lines. Overall, our study suggests that HSP has an anticancer effect on breast cancer cell lines, and the effect is concentration dependent.</p>\",\"PeriodicalId\":14877,\"journal\":{\"name\":\"Journal of Advanced Pharmaceutical Technology & Research\",\"volume\":\"15 1\",\"pages\":\"43-48\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880915/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Pharmaceutical Technology & Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/japtr.japtr_279_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Pharmaceutical Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/japtr.japtr_279_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Exploring the modulation of MLH1 and MSH2 gene expression in hesperetin-treated breast cancer cells (BT-474).
The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC50) of HSP in BT-474 cancer cells after a 48-h exposure was 279.2 μM/ml, while the IC50 in normal cells was 855.4 μM/ml. The cytotoxicity of HSP was more significant in cancer cell lines than in normal cell lines and this aspect presents a favorable factor in utilizing the drug for the treatment of breast cancer. The apoptotic effect of HSP in BT-474 cells was investigated, and it was found that the higher the concentration of HSP more the cells underwent apoptosis. Furthermore, the highest concentration of HSP led to overexpression of the MLH1 and MSH2 genes in both breast cancer and normal cell lines. Overall, our study suggests that HSP has an anticancer effect on breast cancer cell lines, and the effect is concentration dependent.
期刊介绍:
Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is an Official Publication of Society of Pharmaceutical Education & Research™. It is an international journal published Quarterly. Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is available in online and print version. It is a peer reviewed journal aiming to communicate high quality original research work, reviews, short communications, case report, Ethics Forum, Education Forum and Letter to editor that contribute significantly to further the scientific knowledge related to the field of Pharmacy i.e. Pharmaceutics, Pharmacology, Pharmacognosy, Pharmaceutical Chemistry. Articles with timely interest and newer research concepts will be given more preference.