带有随机变化点的纵向数据回归分析。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-04-01 Epub Date: 2024-02-23 DOI:10.1177/09622802241232125
Peng Zhang, Xuerong Chen, Jianguo Sun
{"title":"带有随机变化点的纵向数据回归分析。","authors":"Peng Zhang, Xuerong Chen, Jianguo Sun","doi":"10.1177/09622802241232125","DOIUrl":null,"url":null,"abstract":"<p><p>A great deal of literature has been established for regression analysis of longitudinal data and in particular, many methods have been proposed for the situation where there exist some change points. However, most of these methods only apply to continuous response and focus on the situations where the change point only occurs on the response or the trend of the individual trajectory. In this article, we propose a new joint modeling approach that allows not only the change point to vary for different subjects or be subject-specific but also the effect heterogeneity of the covariates before and after the change point. The method combines a generalized linear mixed effect model with a random change point for the longitudinal response and a log-linear regression model for the random change point. For inference, a maximum likelihood estimation procedure is developed and the asymptotic properties of the resulting estimators, which differ from the standard asymptotic results, are established. A simulation study is conducted and suggests that the proposed method works well for practical situations. An application to a set of real data on COVID-19 is provided.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"634-646"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression analysis of longitudinal data with random change point.\",\"authors\":\"Peng Zhang, Xuerong Chen, Jianguo Sun\",\"doi\":\"10.1177/09622802241232125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A great deal of literature has been established for regression analysis of longitudinal data and in particular, many methods have been proposed for the situation where there exist some change points. However, most of these methods only apply to continuous response and focus on the situations where the change point only occurs on the response or the trend of the individual trajectory. In this article, we propose a new joint modeling approach that allows not only the change point to vary for different subjects or be subject-specific but also the effect heterogeneity of the covariates before and after the change point. The method combines a generalized linear mixed effect model with a random change point for the longitudinal response and a log-linear regression model for the random change point. For inference, a maximum likelihood estimation procedure is developed and the asymptotic properties of the resulting estimators, which differ from the standard asymptotic results, are established. A simulation study is conducted and suggests that the proposed method works well for practical situations. An application to a set of real data on COVID-19 is provided.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"634-646\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241232125\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241232125","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

针对纵向数据的回归分析已有大量文献,尤其是针对存在一些变化点的情况提出了许多方法。然而,这些方法大多只适用于连续响应,而且主要针对变化点仅出现在响应或个体轨迹趋势上的情况。在本文中,我们提出了一种新的联合建模方法,这种方法不仅允许不同受试者的变化点不同或受试者特定,还允许变化点前后协变量的效应异质性。该方法结合了一个广义线性混合效应模型和一个随机变化点的纵向响应模型,以及一个随机变化点的对数线性回归模型。为进行推理,开发了最大似然估计程序,并确定了所得估计值的渐近特性,这些估计值与标准渐近结果不同。模拟研究表明,所提出的方法在实际情况下效果良好。该方法还应用于 COVID-19 的一组真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regression analysis of longitudinal data with random change point.

A great deal of literature has been established for regression analysis of longitudinal data and in particular, many methods have been proposed for the situation where there exist some change points. However, most of these methods only apply to continuous response and focus on the situations where the change point only occurs on the response or the trend of the individual trajectory. In this article, we propose a new joint modeling approach that allows not only the change point to vary for different subjects or be subject-specific but also the effect heterogeneity of the covariates before and after the change point. The method combines a generalized linear mixed effect model with a random change point for the longitudinal response and a log-linear regression model for the random change point. For inference, a maximum likelihood estimation procedure is developed and the asymptotic properties of the resulting estimators, which differ from the standard asymptotic results, are established. A simulation study is conducted and suggests that the proposed method works well for practical situations. An application to a set of real data on COVID-19 is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
An optimal exact confidence interval for the difference of two independent binomial proportions. Covariate-adjusted response-adaptive designs for semiparametric survival models. Model-based optimal randomization procedure for treatment-covariate interaction tests. LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1