Amir Ali Mohammad Khani , Ava Salmanpour , Ali Soldoozy , Elham Zandi
{"title":"包含石墨烯图案的超薄元材料:耦合应用","authors":"Amir Ali Mohammad Khani , Ava Salmanpour , Ali Soldoozy , Elham Zandi","doi":"10.1016/j.memori.2024.100103","DOIUrl":null,"url":null,"abstract":"<div><p>Here a novel ultra-thin meta-material structure is proposed, including periodic arrays of graphene rings, disks, and ribbons and SiO<sub>2</sub> dielectric as spacer between graphene patterns layers at the terahertz (THz) range. The introduced device can couple electromagnetic waves by considering reflection and transmission channels as outputs. Electromagnetic wave coupling depends on the parameters design and the device thickness. The proposed structure can couple electromagnetic waves in multi-band and close frequencies including 2 THz, 4 THz, 6 THz, 7.5 THz, and 9.5 THz. By considering the impedance matching concept, an equivalent circuit model (ECM) is developed for the proposed meta-material. Also, the device stability is investigated in various physical coefficients, geometrical parameters, and incident wave angles to ensure optical applications such as sensors, indoor communications, security, and medical imaging.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"7 ","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000057/pdfft?md5=eeb347f17cf3ff5285ee15a6723d5e1c&pid=1-s2.0-S2773064624000057-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An ultra-thin meta-material including graphene patterns: Coupling application\",\"authors\":\"Amir Ali Mohammad Khani , Ava Salmanpour , Ali Soldoozy , Elham Zandi\",\"doi\":\"10.1016/j.memori.2024.100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here a novel ultra-thin meta-material structure is proposed, including periodic arrays of graphene rings, disks, and ribbons and SiO<sub>2</sub> dielectric as spacer between graphene patterns layers at the terahertz (THz) range. The introduced device can couple electromagnetic waves by considering reflection and transmission channels as outputs. Electromagnetic wave coupling depends on the parameters design and the device thickness. The proposed structure can couple electromagnetic waves in multi-band and close frequencies including 2 THz, 4 THz, 6 THz, 7.5 THz, and 9.5 THz. By considering the impedance matching concept, an equivalent circuit model (ECM) is developed for the proposed meta-material. Also, the device stability is investigated in various physical coefficients, geometrical parameters, and incident wave angles to ensure optical applications such as sensors, indoor communications, security, and medical imaging.</p></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"7 \",\"pages\":\"Article 100103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000057/pdfft?md5=eeb347f17cf3ff5285ee15a6723d5e1c&pid=1-s2.0-S2773064624000057-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An ultra-thin meta-material including graphene patterns: Coupling application
Here a novel ultra-thin meta-material structure is proposed, including periodic arrays of graphene rings, disks, and ribbons and SiO2 dielectric as spacer between graphene patterns layers at the terahertz (THz) range. The introduced device can couple electromagnetic waves by considering reflection and transmission channels as outputs. Electromagnetic wave coupling depends on the parameters design and the device thickness. The proposed structure can couple electromagnetic waves in multi-band and close frequencies including 2 THz, 4 THz, 6 THz, 7.5 THz, and 9.5 THz. By considering the impedance matching concept, an equivalent circuit model (ECM) is developed for the proposed meta-material. Also, the device stability is investigated in various physical coefficients, geometrical parameters, and incident wave angles to ensure optical applications such as sensors, indoor communications, security, and medical imaging.