{"title":"能量传感器:新出现的共生固氮调节器。","authors":"Xiaolong Ke, Xuelu Wang","doi":"10.1016/j.tplants.2024.01.010","DOIUrl":null,"url":null,"abstract":"<p><p>Legume-rhizobium symbiotic nitrogen fixation is a highly energy-consuming process. Recent studies demonstrate that nodule-specific energy sensors play important roles in modulating nodule nitrogen fixation capacity. This opens a new field in the energy regulation of symbiotic nitrogen fixation that can provide insights into designing leguminous crops with efficient nitrogen fixation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy sensors: emerging regulators of symbiotic nitrogen fixation.\",\"authors\":\"Xiaolong Ke, Xuelu Wang\",\"doi\":\"10.1016/j.tplants.2024.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Legume-rhizobium symbiotic nitrogen fixation is a highly energy-consuming process. Recent studies demonstrate that nodule-specific energy sensors play important roles in modulating nodule nitrogen fixation capacity. This opens a new field in the energy regulation of symbiotic nitrogen fixation that can provide insights into designing leguminous crops with efficient nitrogen fixation.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.01.010\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.01.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Energy sensors: emerging regulators of symbiotic nitrogen fixation.
Legume-rhizobium symbiotic nitrogen fixation is a highly energy-consuming process. Recent studies demonstrate that nodule-specific energy sensors play important roles in modulating nodule nitrogen fixation capacity. This opens a new field in the energy regulation of symbiotic nitrogen fixation that can provide insights into designing leguminous crops with efficient nitrogen fixation.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.