{"title":"关于分布自回归和迭代运输","authors":"Laya Ghodrati, Victor M. Panaretos","doi":"10.1111/jtsa.12736","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of <span></span><math>\n <mrow>\n <mi>ℝ</mi>\n </mrow></math>. An order-1 autoregressive model in this context is to be understood as a Markov chain, where one specifies a certain structure (regression) for the one-step conditional Fréchet mean with respect to a natural probability metric. We construct and explore different models based on iterated random function systems of optimal transport maps. While the properties and interpretation of these models depend on how they relate to the iterated transport system, they can all be analyzed theoretically in a unified way. We present such a theoretical analysis, including convergence rates, and illustrate our methodology using real and simulated data. Our approach generalizes or extends certain existing models of transportation-based regression and autoregression, and in doing so also provides some additional insights on existing models.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 5","pages":"739-770"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12736","citationCount":"0","resultStr":"{\"title\":\"On distributional autoregression and iterated transportation\",\"authors\":\"Laya Ghodrati, Victor M. Panaretos\",\"doi\":\"10.1111/jtsa.12736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of <span></span><math>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow></math>. An order-1 autoregressive model in this context is to be understood as a Markov chain, where one specifies a certain structure (regression) for the one-step conditional Fréchet mean with respect to a natural probability metric. We construct and explore different models based on iterated random function systems of optimal transport maps. While the properties and interpretation of these models depend on how they relate to the iterated transport system, they can all be analyzed theoretically in a unified way. We present such a theoretical analysis, including convergence rates, and illustrate our methodology using real and simulated data. Our approach generalizes or extends certain existing models of transportation-based regression and autoregression, and in doing so also provides some additional insights on existing models.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"45 5\",\"pages\":\"739-770\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12736\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12736\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12736","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On distributional autoregression and iterated transportation
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of . An order-1 autoregressive model in this context is to be understood as a Markov chain, where one specifies a certain structure (regression) for the one-step conditional Fréchet mean with respect to a natural probability metric. We construct and explore different models based on iterated random function systems of optimal transport maps. While the properties and interpretation of these models depend on how they relate to the iterated transport system, they can all be analyzed theoretically in a unified way. We present such a theoretical analysis, including convergence rates, and illustrate our methodology using real and simulated data. Our approach generalizes or extends certain existing models of transportation-based regression and autoregression, and in doing so also provides some additional insights on existing models.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.