利用内腔工程缩小垂直腔表面发射激光器线宽

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Quantum Electronics Pub Date : 2024-02-05 DOI:10.1109/JQE.2024.3362276
Zhiting Tang;Chuanlin Li;Feiyun Zhao;Jilin Liu;Aobo Ren;Hongxing Xu;Jiang Wu
{"title":"利用内腔工程缩小垂直腔表面发射激光器线宽","authors":"Zhiting Tang;Chuanlin Li;Feiyun Zhao;Jilin Liu;Aobo Ren;Hongxing Xu;Jiang Wu","doi":"10.1109/JQE.2024.3362276","DOIUrl":null,"url":null,"abstract":"Vertical-cavity surface-emitting lasers (VCSELs), featuring the advantages of low energy consumption, miniaturization, and high-beam quality, show potential for various applications from atomic clock to light detection and ranging (LiDAR). A high-performance atomic clock system requires laser linewidths below 10 MHz to ensure compatibility with the natural atomic linewidth (e.g., 5 MHz for cesium). However, the current prevalent method for reducing VCSEL linewidths relies on external cavities, which adds complexity and cost to the devices and hampers seamless integration into atomic clock systems. While narrow-linewidth VCSELs have been successfully demonstrated using extended cavities, there remains a need for a comprehensive and systematic study on the underlying design principles and optimization strategies. Here, we propose a VCSEL linewidth narrowing strategy enabled by internal-cavity engineering for cesium atomic clock applications. We investigate strategies to narrow the cold cavity linewidth without introducing additional optical round-trip loss. We provide a general approach to constructing the extended cavity (EC) and showcase the ability of manipulating the phase of light. To optimize the electrical properties, we explore variations in the extended layer thickness based on a monolithic VCSEL structure. We proposed an EC-VCSEL configuration with a theoretical laser spectral linewidth of approximately 1.7 MHz and a calculated output power of about 3 mW. Through exploiting gain-cavity offset, the EC-VCSEL exhibits a stable emission (894.6 nm) and a high gain of cavity mode (\n<inline-formula> <tex-math>$\\sim $ </tex-math></inline-formula>\n4000 cm\n<inline-formula> <tex-math>$^{-1}$ </tex-math></inline-formula>\n) at high-temperature (e.g., 360 K). This work may serve as a reference for the realization of narrow-linewidth VCSELs, offering potential benefits in reducing device complexity and facilitating the system integration.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-8"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical-Cavity Surface-Emitting Laser Linewidth Narrowing Enabled by Internal-Cavity Engineering\",\"authors\":\"Zhiting Tang;Chuanlin Li;Feiyun Zhao;Jilin Liu;Aobo Ren;Hongxing Xu;Jiang Wu\",\"doi\":\"10.1109/JQE.2024.3362276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertical-cavity surface-emitting lasers (VCSELs), featuring the advantages of low energy consumption, miniaturization, and high-beam quality, show potential for various applications from atomic clock to light detection and ranging (LiDAR). A high-performance atomic clock system requires laser linewidths below 10 MHz to ensure compatibility with the natural atomic linewidth (e.g., 5 MHz for cesium). However, the current prevalent method for reducing VCSEL linewidths relies on external cavities, which adds complexity and cost to the devices and hampers seamless integration into atomic clock systems. While narrow-linewidth VCSELs have been successfully demonstrated using extended cavities, there remains a need for a comprehensive and systematic study on the underlying design principles and optimization strategies. Here, we propose a VCSEL linewidth narrowing strategy enabled by internal-cavity engineering for cesium atomic clock applications. We investigate strategies to narrow the cold cavity linewidth without introducing additional optical round-trip loss. We provide a general approach to constructing the extended cavity (EC) and showcase the ability of manipulating the phase of light. To optimize the electrical properties, we explore variations in the extended layer thickness based on a monolithic VCSEL structure. We proposed an EC-VCSEL configuration with a theoretical laser spectral linewidth of approximately 1.7 MHz and a calculated output power of about 3 mW. Through exploiting gain-cavity offset, the EC-VCSEL exhibits a stable emission (894.6 nm) and a high gain of cavity mode (\\n<inline-formula> <tex-math>$\\\\sim $ </tex-math></inline-formula>\\n4000 cm\\n<inline-formula> <tex-math>$^{-1}$ </tex-math></inline-formula>\\n) at high-temperature (e.g., 360 K). This work may serve as a reference for the realization of narrow-linewidth VCSELs, offering potential benefits in reducing device complexity and facilitating the system integration.\",\"PeriodicalId\":13200,\"journal\":{\"name\":\"IEEE Journal of Quantum Electronics\",\"volume\":\"60 2\",\"pages\":\"1-8\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10419331/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10419331/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

垂直腔表面发射激光器(VCSEL)具有低能耗、小型化和高光束质量等优点,在原子钟、光探测和测距(LiDAR)等各种应用中都显示出潜力。高性能原子钟系统需要低于 10 MHz 的激光线宽,以确保与天然原子线宽(如铯的 5 MHz)兼容。然而,目前降低 VCSEL 线宽的流行方法依赖于外部腔体,这增加了设备的复杂性和成本,阻碍了与原子钟系统的无缝集成。虽然窄线宽 VCSEL 已利用扩展空腔成功演示,但仍需要对其基本设计原理和优化策略进行全面系统的研究。在此,我们为铯原子钟应用提出了一种通过内腔工程实现的 VCSEL 线宽收窄策略。我们研究了在不引入额外光学往返损耗的情况下缩小冷腔线宽的策略。我们提供了构建扩展腔(EC)的一般方法,并展示了操纵光相位的能力。为了优化电气特性,我们探索了基于单片 VCSEL 结构的扩展层厚度变化。我们提出了一种 EC-VCSEL 配置,其理论激光光谱线宽约为 1.7 MHz,计算输出功率约为 3 mW。通过利用增益-腔体偏移,EC-VCSEL 在高温(如 360 K)条件下表现出稳定的发射(894.6 nm)和腔模的高增益($\sim $ 4000 cm $^{-1}$)。这项工作可作为实现窄线宽 VCSEL 的参考,在降低器件复杂性和促进系统集成方面具有潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical-Cavity Surface-Emitting Laser Linewidth Narrowing Enabled by Internal-Cavity Engineering
Vertical-cavity surface-emitting lasers (VCSELs), featuring the advantages of low energy consumption, miniaturization, and high-beam quality, show potential for various applications from atomic clock to light detection and ranging (LiDAR). A high-performance atomic clock system requires laser linewidths below 10 MHz to ensure compatibility with the natural atomic linewidth (e.g., 5 MHz for cesium). However, the current prevalent method for reducing VCSEL linewidths relies on external cavities, which adds complexity and cost to the devices and hampers seamless integration into atomic clock systems. While narrow-linewidth VCSELs have been successfully demonstrated using extended cavities, there remains a need for a comprehensive and systematic study on the underlying design principles and optimization strategies. Here, we propose a VCSEL linewidth narrowing strategy enabled by internal-cavity engineering for cesium atomic clock applications. We investigate strategies to narrow the cold cavity linewidth without introducing additional optical round-trip loss. We provide a general approach to constructing the extended cavity (EC) and showcase the ability of manipulating the phase of light. To optimize the electrical properties, we explore variations in the extended layer thickness based on a monolithic VCSEL structure. We proposed an EC-VCSEL configuration with a theoretical laser spectral linewidth of approximately 1.7 MHz and a calculated output power of about 3 mW. Through exploiting gain-cavity offset, the EC-VCSEL exhibits a stable emission (894.6 nm) and a high gain of cavity mode ( $\sim $ 4000 cm $^{-1}$ ) at high-temperature (e.g., 360 K). This work may serve as a reference for the realization of narrow-linewidth VCSELs, offering potential benefits in reducing device complexity and facilitating the system integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
期刊最新文献
A Nanoplasmonic Directional Coupler Utilizing a Backed Conductor on Dielectric Substrate With Finite Width Intensity and Degree of Coherence of Vortex Beams in Atmospheric Turbulence Influences of Thermal Effect on the Performance of FMCW Signal Generated by Current-Modulated DFB-LDs Numerical Modeling for 250 nm DUV LEDs With Discrete p-type Functional Layers to Manage Both Carrier and Photon Transport C-Band Directly Modulated Lasers With Tunable Photon–Photon Resonance in InP Membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1