Mikel Ojinaga, Santiago Larregla, Ana Alfaro-Fernández, María Isabel Font-San Ambrosio, Vicente Pallás, Jesús Ángel Sánchez-Navarro
{"title":"多探针的长度和单个探针在其中的位置决定了检测影响辣椒作物的病毒的灵敏度","authors":"Mikel Ojinaga, Santiago Larregla, Ana Alfaro-Fernández, María Isabel Font-San Ambrosio, Vicente Pallás, Jesús Ángel Sánchez-Navarro","doi":"10.1007/s10658-024-02837-w","DOIUrl":null,"url":null,"abstract":"<p>Polyprobes have great potential for simultaneous multipathogen detection and have been successfully used for detecting a large number of plant viruses and/or viroids in a single assay. However, how the length of the polyprobe or the position of the corresponding single probes within them influence their sensitivity has not been previously addressed. In this study, we have developed three polyprobes with the capacity to detect 9 (poly9), 12 (poly12) or 21 (poly21) viruses representing the least prevalent common viruses, the most prevalent viruses or a combination of both types of viruses, respectively, affecting pepper crops. By using known amounts of complementary transcripts and serially diluted extracts from different individually infected pepper plants, we observed that, overall, the detection limit of poly12 and poly21 polyprobes was 5 times and 25/125 times lower than that of the single probes, respectively. An exception was the detection of cucumber mosaic virus and tomato mosaic virus, which were better detected by using poly21 than poly12, possibly due to the more central position of these two probes within the corresponding polyprobes. The analysis of 85 field samples using both poly12 and poly21 also revealed more positives samples with the former, confirming, in general, a higher detection limit for poly12 than poly21. The optimal polyprobe size and temperature for efficient polyvalent virus and/or viroid detection using this technology are discussed.</p>","PeriodicalId":12052,"journal":{"name":"European Journal of Plant Pathology","volume":"116 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The length of the polyprobes and the position of the individual probes in them determine the sensitivity in the detection of viruses affecting pepper crops\",\"authors\":\"Mikel Ojinaga, Santiago Larregla, Ana Alfaro-Fernández, María Isabel Font-San Ambrosio, Vicente Pallás, Jesús Ángel Sánchez-Navarro\",\"doi\":\"10.1007/s10658-024-02837-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polyprobes have great potential for simultaneous multipathogen detection and have been successfully used for detecting a large number of plant viruses and/or viroids in a single assay. However, how the length of the polyprobe or the position of the corresponding single probes within them influence their sensitivity has not been previously addressed. In this study, we have developed three polyprobes with the capacity to detect 9 (poly9), 12 (poly12) or 21 (poly21) viruses representing the least prevalent common viruses, the most prevalent viruses or a combination of both types of viruses, respectively, affecting pepper crops. By using known amounts of complementary transcripts and serially diluted extracts from different individually infected pepper plants, we observed that, overall, the detection limit of poly12 and poly21 polyprobes was 5 times and 25/125 times lower than that of the single probes, respectively. An exception was the detection of cucumber mosaic virus and tomato mosaic virus, which were better detected by using poly21 than poly12, possibly due to the more central position of these two probes within the corresponding polyprobes. The analysis of 85 field samples using both poly12 and poly21 also revealed more positives samples with the former, confirming, in general, a higher detection limit for poly12 than poly21. The optimal polyprobe size and temperature for efficient polyvalent virus and/or viroid detection using this technology are discussed.</p>\",\"PeriodicalId\":12052,\"journal\":{\"name\":\"European Journal of Plant Pathology\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10658-024-02837-w\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10658-024-02837-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
The length of the polyprobes and the position of the individual probes in them determine the sensitivity in the detection of viruses affecting pepper crops
Polyprobes have great potential for simultaneous multipathogen detection and have been successfully used for detecting a large number of plant viruses and/or viroids in a single assay. However, how the length of the polyprobe or the position of the corresponding single probes within them influence their sensitivity has not been previously addressed. In this study, we have developed three polyprobes with the capacity to detect 9 (poly9), 12 (poly12) or 21 (poly21) viruses representing the least prevalent common viruses, the most prevalent viruses or a combination of both types of viruses, respectively, affecting pepper crops. By using known amounts of complementary transcripts and serially diluted extracts from different individually infected pepper plants, we observed that, overall, the detection limit of poly12 and poly21 polyprobes was 5 times and 25/125 times lower than that of the single probes, respectively. An exception was the detection of cucumber mosaic virus and tomato mosaic virus, which were better detected by using poly21 than poly12, possibly due to the more central position of these two probes within the corresponding polyprobes. The analysis of 85 field samples using both poly12 and poly21 also revealed more positives samples with the former, confirming, in general, a higher detection limit for poly12 than poly21. The optimal polyprobe size and temperature for efficient polyvalent virus and/or viroid detection using this technology are discussed.
期刊介绍:
The European Journal of Plant Pathology is an international journal publishing original articles in English dealing with fundamental and applied aspects of plant pathology; considering disease in agricultural and horticultural crops, forestry, and in natural plant populations. The types of articles published are :Original Research at the molecular, physiological, whole-plant and population levels; Mini-reviews on topics which are timely and of global rather than national or regional significance; Short Communications for important research findings that can be presented in an abbreviated format; and Letters-to-the-Editor, where these raise issues related to articles previously published in the journal. Submissions relating to disease vector biology and integrated crop protection are welcome. However, routine screenings of plant protection products, varietal trials for disease resistance, and biological control agents are not published in the journal unless framed in the context of strategic approaches to disease management.