{"title":"重新审视正态分布的生成","authors":"Takayuki Umeda","doi":"10.1007/s00180-024-01468-3","DOIUrl":null,"url":null,"abstract":"<p>Normally distributed random numbers are commonly used in scientific computing in various fields. It is important to generate a set of random numbers as close to a normal distribution as possible for reducing initial fluctuations. Two types of samples from a uniform distribution are examined as source samples for inverse transform sampling methods. Three types of inverse transform sampling methods with new approximations of inverse cumulative distribution functions are also discussed for converting uniformly distributed source samples to normally distributed samples.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of normal distributions revisited\",\"authors\":\"Takayuki Umeda\",\"doi\":\"10.1007/s00180-024-01468-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Normally distributed random numbers are commonly used in scientific computing in various fields. It is important to generate a set of random numbers as close to a normal distribution as possible for reducing initial fluctuations. Two types of samples from a uniform distribution are examined as source samples for inverse transform sampling methods. Three types of inverse transform sampling methods with new approximations of inverse cumulative distribution functions are also discussed for converting uniformly distributed source samples to normally distributed samples.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01468-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01468-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Normally distributed random numbers are commonly used in scientific computing in various fields. It is important to generate a set of random numbers as close to a normal distribution as possible for reducing initial fluctuations. Two types of samples from a uniform distribution are examined as source samples for inverse transform sampling methods. Three types of inverse transform sampling methods with new approximations of inverse cumulative distribution functions are also discussed for converting uniformly distributed source samples to normally distributed samples.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.