利用基于 RL 的自动驾驶车辆车头控制对多个连续瓶颈进行高速公路拥堵管理

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-02-22 DOI:10.1049/itr2.12492
Lina Elmorshedy, Ilia Smirnov, Baher Abdulhai
{"title":"利用基于 RL 的自动驾驶车辆车头控制对多个连续瓶颈进行高速公路拥堵管理","authors":"Lina Elmorshedy,&nbsp;Ilia Smirnov,&nbsp;Baher Abdulhai","doi":"10.1049/itr2.12492","DOIUrl":null,"url":null,"abstract":"<p>Adaptive cruise control (ACC) is the core building block of future full autonomous driving. Numerous recent research demonstrated that Autonomous Vehicles (AVs) adopting shorter headways generally increase road capacity and may relieve congestion at bottlenecks for moderate demand scenarios. However, with high demand scenarios, bottlenecks can still be activated causing capacity breakdown. Therefore, extra control measures as dynamic traffic control near bottlenecks is necessary. The challenge is harder on urban freeways with consecutive bottlenecks which affect each other. This paper aims to improve the performance of ACC systems in a high demand scenario. A multi-bottleneck dynamic headway control strategy based on deep reinforcement learning (DRL) that adapts headways to optimize traffic flow and minimize delay is proposed. The controller dynamically assigns an optimal headway for each controlled section, based on state measurement representing the current traffic conditions. The case study is a freeway stretch with three consecutive bottlenecks which is then extended to include eight bottlenecks. Three different RL agent configurations are presented and compared. It is quantitatively demonstrated that the proposed control strategy improves traffic and enhances the system delay by up to 22.30%, and 18.87% compared to shortest headway setting for the three-bottleneck and the eight-bottleneck networks, respectively.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12492","citationCount":"0","resultStr":"{\"title\":\"Freeway congestion management on multiple consecutive bottlenecks with RL-based headway control of autonomous vehicles\",\"authors\":\"Lina Elmorshedy,&nbsp;Ilia Smirnov,&nbsp;Baher Abdulhai\",\"doi\":\"10.1049/itr2.12492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adaptive cruise control (ACC) is the core building block of future full autonomous driving. Numerous recent research demonstrated that Autonomous Vehicles (AVs) adopting shorter headways generally increase road capacity and may relieve congestion at bottlenecks for moderate demand scenarios. However, with high demand scenarios, bottlenecks can still be activated causing capacity breakdown. Therefore, extra control measures as dynamic traffic control near bottlenecks is necessary. The challenge is harder on urban freeways with consecutive bottlenecks which affect each other. This paper aims to improve the performance of ACC systems in a high demand scenario. A multi-bottleneck dynamic headway control strategy based on deep reinforcement learning (DRL) that adapts headways to optimize traffic flow and minimize delay is proposed. The controller dynamically assigns an optimal headway for each controlled section, based on state measurement representing the current traffic conditions. The case study is a freeway stretch with three consecutive bottlenecks which is then extended to include eight bottlenecks. Three different RL agent configurations are presented and compared. It is quantitatively demonstrated that the proposed control strategy improves traffic and enhances the system delay by up to 22.30%, and 18.87% compared to shortest headway setting for the three-bottleneck and the eight-bottleneck networks, respectively.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12492\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12492\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12492","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自适应巡航控制(ACC)是未来完全自动驾驶的核心组成部分。最近的大量研究表明,自动驾驶汽车(AV)采用较短的行车间隔通常会提高道路通行能力,并可在中等需求情况下缓解瓶颈处的拥堵。然而,在高需求情况下,瓶颈路段仍可能被激活,导致通行能力崩溃。因此,有必要在瓶颈附近采取额外的控制措施,如动态交通控制。在城市高速公路上,由于瓶颈路段连续出现,且相互影响,因此面临的挑战更大。本文旨在改善高需求情况下的自动控制系统性能。本文提出了一种基于深度强化学习(DRL)的多瓶颈动态车行道控制策略,该策略可调整车行道以优化交通流量并最小化延迟。该控制器根据代表当前交通状况的状态测量结果,为每个受控路段动态分配最佳车道。案例研究是一段有三个连续瓶颈的高速公路,然后扩展到八个瓶颈。对三种不同的 RL 代理配置进行了介绍和比较。定量研究表明,与三瓶颈和八瓶颈网络的最短车道设置相比,所提出的控制策略分别改善了交通流量和系统延迟,最高分别提高了 22.30% 和 18.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Freeway congestion management on multiple consecutive bottlenecks with RL-based headway control of autonomous vehicles

Adaptive cruise control (ACC) is the core building block of future full autonomous driving. Numerous recent research demonstrated that Autonomous Vehicles (AVs) adopting shorter headways generally increase road capacity and may relieve congestion at bottlenecks for moderate demand scenarios. However, with high demand scenarios, bottlenecks can still be activated causing capacity breakdown. Therefore, extra control measures as dynamic traffic control near bottlenecks is necessary. The challenge is harder on urban freeways with consecutive bottlenecks which affect each other. This paper aims to improve the performance of ACC systems in a high demand scenario. A multi-bottleneck dynamic headway control strategy based on deep reinforcement learning (DRL) that adapts headways to optimize traffic flow and minimize delay is proposed. The controller dynamically assigns an optimal headway for each controlled section, based on state measurement representing the current traffic conditions. The case study is a freeway stretch with three consecutive bottlenecks which is then extended to include eight bottlenecks. Three different RL agent configurations are presented and compared. It is quantitatively demonstrated that the proposed control strategy improves traffic and enhances the system delay by up to 22.30%, and 18.87% compared to shortest headway setting for the three-bottleneck and the eight-bottleneck networks, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis ADWNet: An improved detector based on YOLOv8 for application in adverse weather for autonomous driving Creep slope estimation for assessing adhesion in the wheel/rail contact Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach Driver distraction and fatigue detection in images using ME-YOLOv8 algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1