生成式人工智能:正在发生的人工智能范式转变?

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Magazine Pub Date : 2024-02-17 DOI:10.1002/aaai.12155
Risto Miikkulainen
{"title":"生成式人工智能:正在发生的人工智能范式转变?","authors":"Risto Miikkulainen","doi":"10.1002/aaai.12155","DOIUrl":null,"url":null,"abstract":"<p>It is sometimes difficult to evaluate progress in Generative AI, that is, image generation and large language models. This may be because they represent a paradigm shift in AI, and the traditional ways of developing, evaluating, understanding, and deploying AI systems no longer apply. Instead, we need to develop new such approaches, possibly by extending those currently in use in cognitive neuroscience and psychology. In this manner, a new AI paradigm can be created, providing a significant leap in AI research and practice.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"165-167"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12155","citationCount":"0","resultStr":"{\"title\":\"Generative AI: An AI paradigm shift in the making?\",\"authors\":\"Risto Miikkulainen\",\"doi\":\"10.1002/aaai.12155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is sometimes difficult to evaluate progress in Generative AI, that is, image generation and large language models. This may be because they represent a paradigm shift in AI, and the traditional ways of developing, evaluating, understanding, and deploying AI systems no longer apply. Instead, we need to develop new such approaches, possibly by extending those currently in use in cognitive neuroscience and psychology. In this manner, a new AI paradigm can be created, providing a significant leap in AI research and practice.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"45 1\",\"pages\":\"165-167\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12155\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12155","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

有时很难评估生成式人工智能(即图像生成和大型语言模型)的进展。这可能是因为它们代表了人工智能的范式转变,而开发、评估、理解和部署人工智能系统的传统方法已不再适用。相反,我们需要开发新的此类方法,可能是通过扩展认知神经科学和心理学目前使用的方法。通过这种方式,我们可以创建一个新的人工智能范式,为人工智能研究和实践带来重大飞跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative AI: An AI paradigm shift in the making?

It is sometimes difficult to evaluate progress in Generative AI, that is, image generation and large language models. This may be because they represent a paradigm shift in AI, and the traditional ways of developing, evaluating, understanding, and deploying AI systems no longer apply. Instead, we need to develop new such approaches, possibly by extending those currently in use in cognitive neuroscience and psychology. In this manner, a new AI paradigm can be created, providing a significant leap in AI research and practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
期刊最新文献
Issue Information AI fairness in practice: Paradigm, challenges, and prospects Toward the confident deployment of real-world reinforcement learning agents Towards robust visual understanding: A paradigm shift in computer vision from recognition to reasoning Efficient and robust sequential decision making algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1