为蛋白质配体相互作用预测建立可通用的基于结构的深度学习模型:挑战与策略

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2024-02-25 DOI:10.1002/wcms.1705
Seokhyun Moon, Wonho Zhung, Woo Youn Kim
{"title":"为蛋白质配体相互作用预测建立可通用的基于结构的深度学习模型:挑战与策略","authors":"Seokhyun Moon,&nbsp;Wonho Zhung,&nbsp;Woo Youn Kim","doi":"10.1002/wcms.1705","DOIUrl":null,"url":null,"abstract":"<p>Accurate and rapid prediction of protein–ligand interactions (PLIs) is the fundamental challenge of drug discovery. Deep learning methods have been harnessed for this purpose, yet the insufficient generalizability of PLI prediction prevents their broader impact on practical applications. Here, we highlight the significance of PLI model generalizability by conceiving PLIs as a function defined on infinitely diverse protein–ligand pairs and binding poses. To delve into the generalization challenges within PLI predictions, we comprehensively explore the evaluation strategies to assess the generalizability fairly. Moreover, we categorize structure-based PLI models with leveraged strategies for learning generalizable features from structure-based PLI data. Finally, we conclude the review by emphasizing the need for accurate pose-predicting methods, which is a prerequisite for more accurate PLI predictions.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward generalizable structure-based deep learning models for protein–ligand interaction prediction: Challenges and strategies\",\"authors\":\"Seokhyun Moon,&nbsp;Wonho Zhung,&nbsp;Woo Youn Kim\",\"doi\":\"10.1002/wcms.1705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate and rapid prediction of protein–ligand interactions (PLIs) is the fundamental challenge of drug discovery. Deep learning methods have been harnessed for this purpose, yet the insufficient generalizability of PLI prediction prevents their broader impact on practical applications. Here, we highlight the significance of PLI model generalizability by conceiving PLIs as a function defined on infinitely diverse protein–ligand pairs and binding poses. To delve into the generalization challenges within PLI predictions, we comprehensively explore the evaluation strategies to assess the generalizability fairly. Moreover, we categorize structure-based PLI models with leveraged strategies for learning generalizable features from structure-based PLI data. Finally, we conclude the review by emphasizing the need for accurate pose-predicting methods, which is a prerequisite for more accurate PLI predictions.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1705\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1705","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确而快速地预测蛋白质配体相互作用(PLIs)是药物发现的基本挑战。深度学习方法已被用于这一目的,但由于 PLI 预测的普适性不足,它们无法在实际应用中产生更广泛的影响。在这里,我们通过将 PLIs 视为定义在无限多样的蛋白质配体对和结合位置上的函数,强调了 PLI 模型泛化的重要性。为了深入探讨 PLI 预测中的泛化难题,我们全面探讨了公平评估泛化能力的评价策略。此外,我们还对基于结构的 PLI 模型进行了分类,并介绍了从基于结构的 PLI 数据中学习可泛化特征的杠杆策略。最后,我们强调了精确姿势预测方法的必要性,这是更精确的 PLI 预测的先决条件,从而结束了本综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward generalizable structure-based deep learning models for protein–ligand interaction prediction: Challenges and strategies

Accurate and rapid prediction of protein–ligand interactions (PLIs) is the fundamental challenge of drug discovery. Deep learning methods have been harnessed for this purpose, yet the insufficient generalizability of PLI prediction prevents their broader impact on practical applications. Here, we highlight the significance of PLI model generalizability by conceiving PLIs as a function defined on infinitely diverse protein–ligand pairs and binding poses. To delve into the generalization challenges within PLI predictions, we comprehensively explore the evaluation strategies to assess the generalizability fairly. Moreover, we categorize structure-based PLI models with leveraged strategies for learning generalizable features from structure-based PLI data. Finally, we conclude the review by emphasizing the need for accurate pose-predicting methods, which is a prerequisite for more accurate PLI predictions.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Nonequilibrium Dynamics at Cellular Interfaces: Insights From Simulation and Theory Unveiling Drug Discovery Insights Through Molecular Electrostatic Potential Analysis Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1