通过激光诱导温度分析探索石墨烯结构、材料特性和电化学特征

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Micro and Nano Systems Letters Pub Date : 2024-02-27 DOI:10.1186/s40486-024-00198-x
Na-Kyoung Yang, Yoo-Kyum Shin, Saeyoung Park, Sang-Min Kim, Bon-Jae Koo, Joonsoo Jeong, Min-Ho Seo
{"title":"通过激光诱导温度分析探索石墨烯结构、材料特性和电化学特征","authors":"Na-Kyoung Yang,&nbsp;Yoo-Kyum Shin,&nbsp;Saeyoung Park,&nbsp;Sang-Min Kim,&nbsp;Bon-Jae Koo,&nbsp;Joonsoo Jeong,&nbsp;Min-Ho Seo","doi":"10.1186/s40486-024-00198-x","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-induced graphene (LIG) is a three-dimensional graphene structure fabricated through the irradiation of a polymer substrate with laser energy (or fluence, equivalently). This methodology offers a cost-effective and facile means of producing 3D nanostructures, yielding graphene materials characterized by extremely high surface area and superior electrical properties, rendering them advantageous for various electrochemical applications. Nonetheless, it is imperative to acknowledge that the structures and material properties of LIG are subject to substantial variations contingent upon processing parameters, thereby underscoring the necessity for systematic inquiry and systematic comprehension of processing conditions, such as fluence and multi-passing, and resultant outcomes. Herein, we explored the impact of different laser fluence levels on the structural and material properties of LIG. We, especially, focused on how laser fluence affected substrate temperature and found that it caused polyimide (PI) substrate pyrolysis, resulting in changes in 3D structures and material density to LIG properties. We also investigated the effects of a multi-passing process on 3D LIG structures and material qualities, varying fluences, and temperature fluctuations. Lastly, we assessed electrochemical properties using LIGs produced under different conditions as working electrodes, leading to distinct impedance profiles and cyclic voltammetry (CV) curves. These variations were linked to the unique structural and material characteristics of the LIG samples.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00198-x","citationCount":"0","resultStr":"{\"title\":\"Exploring graphene structure, material properties, and electrochemical characteristics through laser-induced temperature analysis\",\"authors\":\"Na-Kyoung Yang,&nbsp;Yoo-Kyum Shin,&nbsp;Saeyoung Park,&nbsp;Sang-Min Kim,&nbsp;Bon-Jae Koo,&nbsp;Joonsoo Jeong,&nbsp;Min-Ho Seo\",\"doi\":\"10.1186/s40486-024-00198-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser-induced graphene (LIG) is a three-dimensional graphene structure fabricated through the irradiation of a polymer substrate with laser energy (or fluence, equivalently). This methodology offers a cost-effective and facile means of producing 3D nanostructures, yielding graphene materials characterized by extremely high surface area and superior electrical properties, rendering them advantageous for various electrochemical applications. Nonetheless, it is imperative to acknowledge that the structures and material properties of LIG are subject to substantial variations contingent upon processing parameters, thereby underscoring the necessity for systematic inquiry and systematic comprehension of processing conditions, such as fluence and multi-passing, and resultant outcomes. Herein, we explored the impact of different laser fluence levels on the structural and material properties of LIG. We, especially, focused on how laser fluence affected substrate temperature and found that it caused polyimide (PI) substrate pyrolysis, resulting in changes in 3D structures and material density to LIG properties. We also investigated the effects of a multi-passing process on 3D LIG structures and material qualities, varying fluences, and temperature fluctuations. Lastly, we assessed electrochemical properties using LIGs produced under different conditions as working electrodes, leading to distinct impedance profiles and cyclic voltammetry (CV) curves. These variations were linked to the unique structural and material characteristics of the LIG samples.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00198-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-024-00198-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-024-00198-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导石墨烯(LIG)是一种三维石墨烯结构,通过用激光能量(或等效通量)照射聚合物基底而制成。这种方法提供了一种生产三维纳米结构的成本效益高且简便的手段,生产出的石墨烯材料具有极高的比表面积和卓越的电学特性,使其在各种电化学应用中具有优势。然而,必须承认的是,LIG 的结构和材料特性会因加工参数的不同而发生很大变化,因此有必要对加工条件(如通量和多通道)及其结果进行系统的探究和系统的理解。在此,我们探讨了不同激光通量水平对 LIG 结构和材料特性的影响。我们特别关注了激光通量对基底温度的影响,发现激光通量会导致聚酰亚胺(PI)基底热解,从而改变三维结构和材料密度,影响 LIG 性能。我们还研究了多通道工艺对三维 LIG 结构和材料质量、不同流率和温度波动的影响。最后,我们使用在不同条件下生产的 LIG 作为工作电极,对其电化学特性进行了评估,从而得出了不同的阻抗曲线和循环伏安 (CV) 曲线。这些变化与 LIG 样品独特的结构和材料特性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring graphene structure, material properties, and electrochemical characteristics through laser-induced temperature analysis

Laser-induced graphene (LIG) is a three-dimensional graphene structure fabricated through the irradiation of a polymer substrate with laser energy (or fluence, equivalently). This methodology offers a cost-effective and facile means of producing 3D nanostructures, yielding graphene materials characterized by extremely high surface area and superior electrical properties, rendering them advantageous for various electrochemical applications. Nonetheless, it is imperative to acknowledge that the structures and material properties of LIG are subject to substantial variations contingent upon processing parameters, thereby underscoring the necessity for systematic inquiry and systematic comprehension of processing conditions, such as fluence and multi-passing, and resultant outcomes. Herein, we explored the impact of different laser fluence levels on the structural and material properties of LIG. We, especially, focused on how laser fluence affected substrate temperature and found that it caused polyimide (PI) substrate pyrolysis, resulting in changes in 3D structures and material density to LIG properties. We also investigated the effects of a multi-passing process on 3D LIG structures and material qualities, varying fluences, and temperature fluctuations. Lastly, we assessed electrochemical properties using LIGs produced under different conditions as working electrodes, leading to distinct impedance profiles and cyclic voltammetry (CV) curves. These variations were linked to the unique structural and material characteristics of the LIG samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
期刊最新文献
A novel application of the micro-wire-electro-discharge-grinding (µ-WEDG) method for the generation of tantalum and brass nanoparticles A review of human augmentation and individual combat capability: focusing on MEMS-based neurotechnology Experimental study of processing of PCL (polycaprolactone)-peptides nanoparticles and its biodistribution analysis for drug delivery system Facile extraction of scanning probe shape for improved deconvolution of tip-sample interaction artifacts Contrasting responses of motile and non-motile Escherichia coli strains in resuscitation against stable ultrafine gold nanosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1