分析在混凝土中用浮石粉和竹叶灰部分取代水泥对力学、耐久性和微观结构的影响

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Civil Engineering Pub Date : 2024-02-27 DOI:10.1155/2024/5119850
Haris Hassen Adem, Fikreyesus Demeke Cherkos
{"title":"分析在混凝土中用浮石粉和竹叶灰部分取代水泥对力学、耐久性和微观结构的影响","authors":"Haris Hassen Adem, Fikreyesus Demeke Cherkos","doi":"10.1155/2024/5119850","DOIUrl":null,"url":null,"abstract":"This study explores the physiomechanical and durability properties of C-25 concrete by partially replacing cement with blends of pumice powder (PP) and bamboo leaf ash (BLA). The combined amount of major oxides SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> in PP is 84.59%, while in BLA, it is 74.4%, classifying PP and BLA as class N and F pozzolans. Subsequently, the study examines the impact of different cement replacement percentages, emphasizing 5%, 10%, 15%, and 20% on C-25 with varying mixes of concrete: Mix-1 (100, 0, and 0), Mix-2 (90, 5, and 5), Mix-3 (85, 10, and 5), Mix-4 (85, 5, and 10), and Mix-5 (80, 10, and 10) which correspond to the proportions of OPC, VPP, and BLA used in each mix respectively and by using 1 : 2.34 : 2.68 (cement : sand : aggregate) with the water/cement ratio (w/c) of 0.491. The study’s findings indicate that as the proportion of PP and BLA increases in concrete, the workability of the mixture decreases. Moreover, on the 28th day, Mix-2 with (35.84 MPa) and Mix-3 with (33.55 MPa) met the desired mean compressive strength (33.5 MPa) required for C-25 concrete per the ACI standards. Additionally, the flexural strength of concrete produced with partial replacement of Mix-2 with a flexural strength of 3.86 MPa fulfills the minimum strength requirement of 3.5 MPa specified by the C-25 ACI standards. The PP and BLA blended concrete had lower water absorption than the control mix in Mix-2. It also improved resistance to sulfuric acid attack, and Mix-3 had the least strength reduction of 9.59%. In contrast, the control mix has a 33.34% strength reduction.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"156 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Mechanical, Durability, and Microstructural Impact of Partial Cement Replacement with Pumice Powder and Bamboo Leaf Ash in Concrete\",\"authors\":\"Haris Hassen Adem, Fikreyesus Demeke Cherkos\",\"doi\":\"10.1155/2024/5119850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the physiomechanical and durability properties of C-25 concrete by partially replacing cement with blends of pumice powder (PP) and bamboo leaf ash (BLA). The combined amount of major oxides SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> in PP is 84.59%, while in BLA, it is 74.4%, classifying PP and BLA as class N and F pozzolans. Subsequently, the study examines the impact of different cement replacement percentages, emphasizing 5%, 10%, 15%, and 20% on C-25 with varying mixes of concrete: Mix-1 (100, 0, and 0), Mix-2 (90, 5, and 5), Mix-3 (85, 10, and 5), Mix-4 (85, 5, and 10), and Mix-5 (80, 10, and 10) which correspond to the proportions of OPC, VPP, and BLA used in each mix respectively and by using 1 : 2.34 : 2.68 (cement : sand : aggregate) with the water/cement ratio (w/c) of 0.491. The study’s findings indicate that as the proportion of PP and BLA increases in concrete, the workability of the mixture decreases. Moreover, on the 28th day, Mix-2 with (35.84 MPa) and Mix-3 with (33.55 MPa) met the desired mean compressive strength (33.5 MPa) required for C-25 concrete per the ACI standards. Additionally, the flexural strength of concrete produced with partial replacement of Mix-2 with a flexural strength of 3.86 MPa fulfills the minimum strength requirement of 3.5 MPa specified by the C-25 ACI standards. The PP and BLA blended concrete had lower water absorption than the control mix in Mix-2. It also improved resistance to sulfuric acid attack, and Mix-3 had the least strength reduction of 9.59%. In contrast, the control mix has a 33.34% strength reduction.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5119850\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5119850","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了用浮石粉(PP)和竹叶灰(BLA)掺合料部分替代水泥的 C-25 混凝土的物理力学性能和耐久性能。浮石粉中主要氧化物 SiO2、Al2O3 和 Fe2O3 的合计含量为 84.59%,而竹叶灰中主要氧化物 SiO2、Al2O3 和 Fe2O3 的合计含量为 74.4%,因此将浮石粉和竹叶灰划分为 N 级和 F 级。随后,研究考察了不同水泥替代率(强调 5%、10%、15% 和 20%)对不同混凝土混合料 C-25 的影响:混合料-1(100、0 和 0)、混合料-2(90、5 和 5)、混合料-3(85、10 和 5)、混合料-4(85、5 和 10)和混合料-5(80、10 和 10)分别对应于每种混合料中使用的 OPC、VPP 和 BLA 的比例,使用 1 : 2.34 : 2.68(水泥 : 砂 : 骨料),水灰比(w/c)为 0.491。研究结果表明,随着 PP 和 BLA 在混凝土中比例的增加,混合物的工作性降低。此外,在第 28 天,混合料-2 的抗压强度(35.84 兆帕)和混合料-3 的抗压强度(33.55 兆帕)达到了 ACI 标准规定的 C-25 混凝土所需的平均抗压强度(33.5 兆帕)。此外,部分替代 Mix-2 生产的混凝土抗折强度为 3.86 兆帕,达到了 C-25 ACI 标准规定的最低强度要求 3.5 兆帕。与 Mix-2 的对照组相比,PP 和 BLA 混合混凝土的吸水率更低。混合料-3 的强度降低幅度最小,仅为 9.59%。相比之下,对照组混合料的强度降低了 33.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing the Mechanical, Durability, and Microstructural Impact of Partial Cement Replacement with Pumice Powder and Bamboo Leaf Ash in Concrete
This study explores the physiomechanical and durability properties of C-25 concrete by partially replacing cement with blends of pumice powder (PP) and bamboo leaf ash (BLA). The combined amount of major oxides SiO2, Al2O3, and Fe2O3 in PP is 84.59%, while in BLA, it is 74.4%, classifying PP and BLA as class N and F pozzolans. Subsequently, the study examines the impact of different cement replacement percentages, emphasizing 5%, 10%, 15%, and 20% on C-25 with varying mixes of concrete: Mix-1 (100, 0, and 0), Mix-2 (90, 5, and 5), Mix-3 (85, 10, and 5), Mix-4 (85, 5, and 10), and Mix-5 (80, 10, and 10) which correspond to the proportions of OPC, VPP, and BLA used in each mix respectively and by using 1 : 2.34 : 2.68 (cement : sand : aggregate) with the water/cement ratio (w/c) of 0.491. The study’s findings indicate that as the proportion of PP and BLA increases in concrete, the workability of the mixture decreases. Moreover, on the 28th day, Mix-2 with (35.84 MPa) and Mix-3 with (33.55 MPa) met the desired mean compressive strength (33.5 MPa) required for C-25 concrete per the ACI standards. Additionally, the flexural strength of concrete produced with partial replacement of Mix-2 with a flexural strength of 3.86 MPa fulfills the minimum strength requirement of 3.5 MPa specified by the C-25 ACI standards. The PP and BLA blended concrete had lower water absorption than the control mix in Mix-2. It also improved resistance to sulfuric acid attack, and Mix-3 had the least strength reduction of 9.59%. In contrast, the control mix has a 33.34% strength reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Application of Ecofriendly Geopolymer Binder to Enhance the Strength and Swelling Properties of Expansive Soils Application of Fully Connected Neural Network-Based PyTorch in Concrete Compressive Strength Prediction Influence of Mechanical and Microscopic Properties of Red Sandstone Modified by Different Solid Waste Materials A Comparative Study of Subsurface Profile Using Bore Log Data and Geophysical Method at Mandideep Region, India Mapping Longitudinal and Transverse Displacements of a Dam Crest Based on the Synergy of High-Precision Remote Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1