{"title":"华南湿润流域干旱条件下植被动态对水文模拟的影响","authors":"Cancan Liu, Yongqin David Chen","doi":"10.1002/eco.2630","DOIUrl":null,"url":null,"abstract":"<p>Vegetation plays an essential role in the atmospheric and hydrological processes, and vegetation responds differently to climate change in various regions, especially in extreme climates. Therefore, the use of static prescribed vegetation information from past years in numerical models can be a source of biases in hydrological simulations. However, previous studies have mainly focused on the effects of vegetation dynamics on hydrological processes in arid and semi-arid regions. It remains unclear how static or dynamic vegetation affects hydrological simulations in humid regions, especially under drought conditions. In this study, the Weather Research and Forecasting (WRF) model coupled with Noah-MP was used to assess the impact of vegetation dynamics on hydrological simulations in the East River basin (ERb) of China, which is a major water source for several major cities in the Pearl River Delta. The model was run with prescribed and dynamic vegetation conditions, respectively. Our model validation based on observed 2-m temperature (T2) and Leaf Area Index (LAI) showed that the model performance was improved when vegetation dynamics were considered. Our simulations with static or dynamic vegetation showed the impacts of vegetation dynamics on hydrological simulations under droughts. The model with vegetation dynamics simulated a wetter condition with higher soil moisture and runoff and lower T2, compared with the simulations of static vegetation. The results suggested that ignoring vegetation dynamics may overestimate the severity of drought in this humid basin, unlike arid and semi-arid regions. Therefore, consideration of vegetation dynamics in this humid basin will deepen our research on different types of zones and serve as a reference for other humid regions.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2630","citationCount":"0","resultStr":"{\"title\":\"Impacts of vegetation dynamics on hydrological simulations under drought conditions in a humid river basin in Southern China\",\"authors\":\"Cancan Liu, Yongqin David Chen\",\"doi\":\"10.1002/eco.2630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vegetation plays an essential role in the atmospheric and hydrological processes, and vegetation responds differently to climate change in various regions, especially in extreme climates. Therefore, the use of static prescribed vegetation information from past years in numerical models can be a source of biases in hydrological simulations. However, previous studies have mainly focused on the effects of vegetation dynamics on hydrological processes in arid and semi-arid regions. It remains unclear how static or dynamic vegetation affects hydrological simulations in humid regions, especially under drought conditions. In this study, the Weather Research and Forecasting (WRF) model coupled with Noah-MP was used to assess the impact of vegetation dynamics on hydrological simulations in the East River basin (ERb) of China, which is a major water source for several major cities in the Pearl River Delta. The model was run with prescribed and dynamic vegetation conditions, respectively. Our model validation based on observed 2-m temperature (T2) and Leaf Area Index (LAI) showed that the model performance was improved when vegetation dynamics were considered. Our simulations with static or dynamic vegetation showed the impacts of vegetation dynamics on hydrological simulations under droughts. The model with vegetation dynamics simulated a wetter condition with higher soil moisture and runoff and lower T2, compared with the simulations of static vegetation. The results suggested that ignoring vegetation dynamics may overestimate the severity of drought in this humid basin, unlike arid and semi-arid regions. Therefore, consideration of vegetation dynamics in this humid basin will deepen our research on different types of zones and serve as a reference for other humid regions.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2630\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2630\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2630","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Impacts of vegetation dynamics on hydrological simulations under drought conditions in a humid river basin in Southern China
Vegetation plays an essential role in the atmospheric and hydrological processes, and vegetation responds differently to climate change in various regions, especially in extreme climates. Therefore, the use of static prescribed vegetation information from past years in numerical models can be a source of biases in hydrological simulations. However, previous studies have mainly focused on the effects of vegetation dynamics on hydrological processes in arid and semi-arid regions. It remains unclear how static or dynamic vegetation affects hydrological simulations in humid regions, especially under drought conditions. In this study, the Weather Research and Forecasting (WRF) model coupled with Noah-MP was used to assess the impact of vegetation dynamics on hydrological simulations in the East River basin (ERb) of China, which is a major water source for several major cities in the Pearl River Delta. The model was run with prescribed and dynamic vegetation conditions, respectively. Our model validation based on observed 2-m temperature (T2) and Leaf Area Index (LAI) showed that the model performance was improved when vegetation dynamics were considered. Our simulations with static or dynamic vegetation showed the impacts of vegetation dynamics on hydrological simulations under droughts. The model with vegetation dynamics simulated a wetter condition with higher soil moisture and runoff and lower T2, compared with the simulations of static vegetation. The results suggested that ignoring vegetation dynamics may overestimate the severity of drought in this humid basin, unlike arid and semi-arid regions. Therefore, consideration of vegetation dynamics in this humid basin will deepen our research on different types of zones and serve as a reference for other humid regions.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.