Carlos A. Giron Rodriguez, Nishithan C. Kani, Asger B. Moss, Bjørt Oladottir Joensen, Sahil Garg, Wanyu Deng, Terry Wilson, John R. Varcoe, Ib Chorkendorff and Brian Seger
{"title":"对高温零间隙二氧化碳电解的见解","authors":"Carlos A. Giron Rodriguez, Nishithan C. Kani, Asger B. Moss, Bjørt Oladottir Joensen, Sahil Garg, Wanyu Deng, Terry Wilson, John R. Varcoe, Ib Chorkendorff and Brian Seger","doi":"10.1039/D3EY00224A","DOIUrl":null,"url":null,"abstract":"<p >Renewable-powered CO<small><sub>2</sub></small> electrolysis (CO<small><sub>2</sub></small>E) is a promising strategy to reduce greenhouse gas emissions by transforming CO<small><sub>2</sub></small> into valuable feedstocks. While recent studies in this field have focused on developing efficient catalyst materials or electrolyzer engineering, the operating temperature's effect has not been systematically examined for zero-gap electrolyzers. To examine the effects of operating temperature, a systematic investigation was conducted using zero-gap (MEA) Cu-based GDEs across a range from room temperature to 80 °C. Our results indicate that increasing the temperature improves CO<small><sub>2</sub></small> mass transport, ionic conductivity, and water management, allowing for high catalytic activity toward CO<small><sub>2</sub></small>E. At operating temperatures greater than 50 °C, selectivity shifted substantially towards CO, with surface enhanced infrared absorption spectroscopy (SEIRAS) showing a concomitant decrease in surface CO coverage at and above this temperature. As commercial electrolyzers will operate at elevated temperatures due to ohmic heating, they may produce a significantly different product distribution than the room-temperature electrolysis prevalent in the literature. Experiments at elevated temperatures demonstrated improved results for CO<small><sub>2</sub></small>E with industrially relevant current densities (150 mA cm<small><sup>−2</sup></small>) over an extended operational period (>200 hours). Additionally, we found that the heating method strongly affects product selectivity and the electrolyzer's performance, emphasizing the need to ensure proper heating while working under these reaction systems.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00224a?page=search","citationCount":"0","resultStr":"{\"title\":\"Insights into zero-gap CO2 electrolysis at elevated temperatures†\",\"authors\":\"Carlos A. Giron Rodriguez, Nishithan C. Kani, Asger B. Moss, Bjørt Oladottir Joensen, Sahil Garg, Wanyu Deng, Terry Wilson, John R. Varcoe, Ib Chorkendorff and Brian Seger\",\"doi\":\"10.1039/D3EY00224A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Renewable-powered CO<small><sub>2</sub></small> electrolysis (CO<small><sub>2</sub></small>E) is a promising strategy to reduce greenhouse gas emissions by transforming CO<small><sub>2</sub></small> into valuable feedstocks. While recent studies in this field have focused on developing efficient catalyst materials or electrolyzer engineering, the operating temperature's effect has not been systematically examined for zero-gap electrolyzers. To examine the effects of operating temperature, a systematic investigation was conducted using zero-gap (MEA) Cu-based GDEs across a range from room temperature to 80 °C. Our results indicate that increasing the temperature improves CO<small><sub>2</sub></small> mass transport, ionic conductivity, and water management, allowing for high catalytic activity toward CO<small><sub>2</sub></small>E. At operating temperatures greater than 50 °C, selectivity shifted substantially towards CO, with surface enhanced infrared absorption spectroscopy (SEIRAS) showing a concomitant decrease in surface CO coverage at and above this temperature. As commercial electrolyzers will operate at elevated temperatures due to ohmic heating, they may produce a significantly different product distribution than the room-temperature electrolysis prevalent in the literature. Experiments at elevated temperatures demonstrated improved results for CO<small><sub>2</sub></small>E with industrially relevant current densities (150 mA cm<small><sup>−2</sup></small>) over an extended operational period (>200 hours). Additionally, we found that the heating method strongly affects product selectivity and the electrolyzer's performance, emphasizing the need to ensure proper heating while working under these reaction systems.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00224a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00224a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00224a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
以可再生能源为动力的二氧化碳电解(CO2E)是通过将二氧化碳转化为有价值的原料来减少温室气体排放的一项前景广阔的战略。虽然该领域的近期研究主要集中在开发高效催化剂材料或电解槽工程方面,但尚未对零间隙电解槽的工作温度影响进行系统研究。为了研究工作温度的影响,我们使用零间隙(MEA)铜基 GDE 在室温到 80°C 的范围内进行了系统研究。我们的研究结果表明,温度升高可改善二氧化碳的质量传输、离子传导性和水管理,从而实现对 CO2E 的高催化活性。在工作温度高于 50°C 时,选择性大大转向 CO,表面增强红外吸收光谱(SEIRAS)显示,在该温度及以上,表面 CO 覆盖率随之下降。在高温下进行的实验表明,在延长运行时间(200 小时)的情况下,以工业相关的电流密度(150 mA-cm-2)进行 CO2E 的结果有所改善。此外,我们还发现加热方法对产品的选择性和电解槽的性能有很大影响,这强调了在这些反应系统下工作时确保适当加热的必要性。
Insights into zero-gap CO2 electrolysis at elevated temperatures†
Renewable-powered CO2 electrolysis (CO2E) is a promising strategy to reduce greenhouse gas emissions by transforming CO2 into valuable feedstocks. While recent studies in this field have focused on developing efficient catalyst materials or electrolyzer engineering, the operating temperature's effect has not been systematically examined for zero-gap electrolyzers. To examine the effects of operating temperature, a systematic investigation was conducted using zero-gap (MEA) Cu-based GDEs across a range from room temperature to 80 °C. Our results indicate that increasing the temperature improves CO2 mass transport, ionic conductivity, and water management, allowing for high catalytic activity toward CO2E. At operating temperatures greater than 50 °C, selectivity shifted substantially towards CO, with surface enhanced infrared absorption spectroscopy (SEIRAS) showing a concomitant decrease in surface CO coverage at and above this temperature. As commercial electrolyzers will operate at elevated temperatures due to ohmic heating, they may produce a significantly different product distribution than the room-temperature electrolysis prevalent in the literature. Experiments at elevated temperatures demonstrated improved results for CO2E with industrially relevant current densities (150 mA cm−2) over an extended operational period (>200 hours). Additionally, we found that the heating method strongly affects product selectivity and the electrolyzer's performance, emphasizing the need to ensure proper heating while working under these reaction systems.