Heating dictates the scalability of CO2 electrolyzer types.

EES catalysis Pub Date : 2024-12-27 DOI:10.1039/d4ey00190g
Jan-Willem Hurkmans, Henri M Pelzer, Tom Burdyny, Jurriaan Peeters, David A Vermaas
{"title":"Heating dictates the scalability of CO<sub>2</sub> electrolyzer types.","authors":"Jan-Willem Hurkmans, Henri M Pelzer, Tom Burdyny, Jurriaan Peeters, David A Vermaas","doi":"10.1039/d4ey00190g","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical CO<sub>2</sub> reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO<sub>2</sub> reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions. We describe here a model prediction for non-isothermal behavior beyond the typical 1D models to illustrate the severity of heating at larger scales. We develop a 2D model for two membrane electrode assembly (MEA) CO<sub>2</sub> electrolyzers; a liquid anolyte fed MEA (exchange MEA) and a fully gas fed configuration (full MEA). Our results indicate that full MEA configurations exhibit very poor electrochemical performance at moderately larger scales due to non-isothermal effects. Heating results in severe membrane dehydration, which induces large Ohmic losses in the membrane, resulting in a sharp decline in the current density along the flow direction. In contrast, the anolyte employed in the exchange MEA configuration is effective in preventing large thermal gradients. Membrane dehydration is not a problem for the exchange MEA configuration, leading to a nearly constant current density over the entire length of the modeled domain, and indicating that exchange MEA configurations are well suited for scale-up. Our results additionally indicate that a balance between faster kinetics, higher ionic conductivity, smaller pH gradients and lower CO<sub>2</sub> solubility causes an optimum operating temperature between 60 and 70 °C.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4ey00190g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO2 reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions. We describe here a model prediction for non-isothermal behavior beyond the typical 1D models to illustrate the severity of heating at larger scales. We develop a 2D model for two membrane electrode assembly (MEA) CO2 electrolyzers; a liquid anolyte fed MEA (exchange MEA) and a fully gas fed configuration (full MEA). Our results indicate that full MEA configurations exhibit very poor electrochemical performance at moderately larger scales due to non-isothermal effects. Heating results in severe membrane dehydration, which induces large Ohmic losses in the membrane, resulting in a sharp decline in the current density along the flow direction. In contrast, the anolyte employed in the exchange MEA configuration is effective in preventing large thermal gradients. Membrane dehydration is not a problem for the exchange MEA configuration, leading to a nearly constant current density over the entire length of the modeled domain, and indicating that exchange MEA configurations are well suited for scale-up. Our results additionally indicate that a balance between faster kinetics, higher ionic conductivity, smaller pH gradients and lower CO2 solubility causes an optimum operating temperature between 60 and 70 °C.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加热决定了二氧化碳电解槽类型的可扩展性。
电化学二氧化碳还原提供了一种很有前途的方法,将可再生电能转化为有价值的碳氢化合物,这对难以减排的行业至关重要。在实验室规模上取得了重大进展,但大规模示范仍然有限。由于二氧化碳减排的能源效率较低,我们怀疑在工业相关方面可能会出现显著的热梯度。我们在这里描述了一个非等温行为的模型预测,超出了典型的一维模型,以说明在更大尺度上加热的严重性。建立了双膜电极组件(MEA) CO2电解槽的二维模型;液体阳极液供给的MEA(交换MEA)和全气体供给的配置(全MEA)。我们的研究结果表明,由于非等温效应,完整的MEA结构在中等规模下表现出非常差的电化学性能。加热导致膜严重脱水,膜内欧姆损失大,导致电流密度沿流动方向急剧下降。相反,在交换MEA配置中使用的阳极液在防止大的热梯度方面是有效的。膜脱水不是交换MEA配置的问题,导致在整个建模域的长度上几乎恒定的电流密度,并表明交换MEA配置非常适合扩大规模。我们的结果还表明,更快的动力学,更高的离子电导率,更小的pH梯度和更低的CO2溶解度之间的平衡导致最佳操作温度在60到70°C之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Heating dictates the scalability of CO2 electrolyzer types. EES Catalysis: embracing energy and environmental catalysis Carbon incorporated isotype heterojunction of poly(heptazine imide) for efficient visible light photocatalytic hydrogen evolution† Unidirectional bubble transportation on slippery micro-cone array electrodes enables spontaneous 99.99% gas separation in membrane-less water electrolysis†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1