ClusterFinder:从成对分布函数数据中查找聚类结构的快速工具。

IF 1.9 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-02-29 DOI:10.1107/S2053273324001116
Andy S Anker, Ulrik Friis-Jensen, Frederik L Johansen, Simon J L Billinge, Kirsten M Ø Jensen
{"title":"ClusterFinder:从成对分布函数数据中查找聚类结构的快速工具。","authors":"Andy S Anker, Ulrik Friis-Jensen, Frederik L Johansen, Simon J L Billinge, Kirsten M Ø Jensen","doi":"10.1107/S2053273324001116","DOIUrl":null,"url":null,"abstract":"<p><p>A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 10<sup>4</sup> to 10<sup>5</sup> candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"213-220"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913672/pdf/","citationCount":"0","resultStr":"{\"title\":\"ClusterFinder: a fast tool to find cluster structures from pair distribution function data.\",\"authors\":\"Andy S Anker, Ulrik Friis-Jensen, Frederik L Johansen, Simon J L Billinge, Kirsten M Ø Jensen\",\"doi\":\"10.1107/S2053273324001116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 10<sup>4</sup> to 10<sup>5</sup> candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\" \",\"pages\":\"213-220\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273324001116\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273324001116","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

报告了一种新型自动高通量筛选方法 ClusterFinder,用于寻找原子对分布函数(PDF)结构细化的候选结构。当 PDF 来源于纳米团簇或小纳米粒子时,为 PDF 精炼寻找起始模型是出了名的困难。报告中的 ClusterFinder 算法可以在几分钟内从无机晶体结构数据库(ICSD)等结构数据库中筛选出 104 到 105 个候选结构,并将晶体结构作为模板,在其中寻找能产生与目标测量 PDF 相似的 PDF 的原子簇。该算法会返回一个有序排列的原子团列表,供用户进一步评估。该算法在模拟和测量金属氧簇(如 Keggin 簇)的 PDF 方面表现出色。因此,这是一种在纳米粒子和纳米团簇 PDF 的建模活动中寻找候选结构团簇的强大方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ClusterFinder: a fast tool to find cluster structures from pair distribution function data.

A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 104 to 105 candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
期刊最新文献
Complete classification of six-dimensional iso-edge domains. The general equation of δ direct methods and the novel SMAR algorithm residuals using the absolute value of ρ and the zero conversion of negative ripples. Periodic graphs with coincident edges: folding-ladder and related graphs. Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models. An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1