Andy S Anker, Ulrik Friis-Jensen, Frederik L Johansen, Simon J L Billinge, Kirsten M Ø Jensen
{"title":"ClusterFinder:从成对分布函数数据中查找聚类结构的快速工具。","authors":"Andy S Anker, Ulrik Friis-Jensen, Frederik L Johansen, Simon J L Billinge, Kirsten M Ø Jensen","doi":"10.1107/S2053273324001116","DOIUrl":null,"url":null,"abstract":"<p><p>A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 10<sup>4</sup> to 10<sup>5</sup> candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"213-220"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913672/pdf/","citationCount":"0","resultStr":"{\"title\":\"ClusterFinder: a fast tool to find cluster structures from pair distribution function data.\",\"authors\":\"Andy S Anker, Ulrik Friis-Jensen, Frederik L Johansen, Simon J L Billinge, Kirsten M Ø Jensen\",\"doi\":\"10.1107/S2053273324001116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 10<sup>4</sup> to 10<sup>5</sup> candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\" \",\"pages\":\"213-220\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273324001116\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273324001116","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
报告了一种新型自动高通量筛选方法 ClusterFinder,用于寻找原子对分布函数(PDF)结构细化的候选结构。当 PDF 来源于纳米团簇或小纳米粒子时,为 PDF 精炼寻找起始模型是出了名的困难。报告中的 ClusterFinder 算法可以在几分钟内从无机晶体结构数据库(ICSD)等结构数据库中筛选出 104 到 105 个候选结构,并将晶体结构作为模板,在其中寻找能产生与目标测量 PDF 相似的 PDF 的原子簇。该算法会返回一个有序排列的原子团列表,供用户进一步评估。该算法在模拟和测量金属氧簇(如 Keggin 簇)的 PDF 方面表现出色。因此,这是一种在纳米粒子和纳米团簇 PDF 的建模活动中寻找候选结构团簇的强大方法。
ClusterFinder: a fast tool to find cluster structures from pair distribution function data.
A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 104 to 105 candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.